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Looking Back in Time

BIG BANG

Onde gravitazionali

102 secondi
dopo il Big Bang
onde gravitazionali primordiali

1 secondo
dopo il Big Bang

CNB 380.000 anni

dopo il Big Bang
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The Neutrino Sky
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m, < 0.00001 eV m, ~ 0.001 eV

Hannestad, Brandbyge (2009)
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m, ~ 0.01 eV




Detection Concept: Neutrino Capture




Challenges: Resolution and Backgrounds
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High Radio-Purity Carbon

Thumb radioactivity (1 per second = 1 per 100 years)

Graphene fabrication from CO, > CH;OH - CH,

inner core
Outer core
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Electromagnetic Telescope Optics

KGeoBag Visualization

mouse interaction:
rotation - left button glll nice]
pan - center bubton [3-button mouse], shift + left button gl or 2 button mouse]
zoom - right button [3 buttonwmouse], ctrl + shift + left button [1 or 2 button mouse]

help toggle: Ol
data toggle: d ol

axis te?glz: a [on]
parallel projection toggle: p  [OFF]
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reset view: r
quit: q
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Measurement of Endpoint Energies
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Microcalorimetry

« Optimize Transition-Edge Sensors for low energy
electron calorimetry with an energy resolution
sufficient to resolve the neutrino mass
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Single Infrared Photon Detectors

Results from INRIM (Torino) - .
Transition-Edge Sensor
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PTOLEMY Working Grou

PTOLEMY ORGANIZATION CHART
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PTOLEMY Collaboration
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Challenges: Resolution and Backgrounds

Miight = 0.01 eV Miight = 0.05 eV
A=0.01eVv
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Polarized Tritium Target

Lisanti, Safdi, CGT, 2014.

"Point at the Sky with Tritium Nuclear Spin I

" U~20 meV

- H atom
o Graphene

- Hydrogen doping on
graphene reveals
magnetism

diidV (a.u.)
N

900 -E;O O Sb 100
Voltage (mV)

Gonzalez-Herrero, H. et al. Atomic-scale control of graphene magnetism by using
hydrogen atoms. Science (80).352,437-441(2016).




Polarized °H Decay

(1)

where Gp is the Fermi constant, Am is the difference between the 3H and 3He
mass, pe (E.) is the electron impulse (energy), B (v) is the electron (neutrino)
three-velocity, and P is the 3H polarization versor. The quantities &, a, A and
B contain the nuclear matrix elements, and and can be written in terms of the
“standard” Fermi (F') and Gamow-Teller (G'T") matrix elements as

¢ [F|* + gA|GT)?
2
Cl,f |P’|2 T ?AK;TW2 )

2 2
A —Z¢4|GT)? + —|GT||F] ,
¢ = —50AlGTI + ZIGTIF
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CNB Signal-to-Noise
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Cryogenic System of CRESST
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High Radio-Pure °C
(CO,~>CH,)

Mass Flow Contr({}ler
1! ?’;‘ée CO, Reactor Furnace

Cold Trap

Pump

~ Gas Chromatogra

CVD Graphene Growth Furnace
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Electron-Graphene Interaction Chamber

Electrostatic spectrometer

Substrate /m

Primary e- beam
1-20 keV

Low energy %%\’}: Si spectrometer
e-beam 0-100 eV




Electron Gun

Focusing lens HV electrode LV electrode

Holder and screw
To adjust lens
DOSI i on




Direction Detection MeV Dark
Matter Searches

PTOLEMY-G? PTOLEMY-CNT

C =0.001

— Y. Hochberg et al., arXiv:1606.08849 i

]
" PTOLEMY-G3(103cm?d)

Self-instrumented with G-FETs  Anisotropy of aligned CNTs
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Celestial Globes

Adiabatic Density Anisotropies §~107°
at z~1100

Johann Schéner, ¢.1534 AW WMAP, ¢.2009




Big Bang Cosmology

Conformal Time

Past Light-Cone

Last-Scattering Surface

Recombination

N

[

Big Bang Singularity Particle Horizon

Common Past?

Incredibly Uniform
5~10° atz~1100




Our Home in the Universe

Ostriker, J.P. & Peebles, PJ.E. 1973, Ap. J 186 467

To study the stability of flattened galaxies, we have followed the evolution of simulated galaxies
containing 150 to 500 mass points. Models which begin with characteristics similar to the disk of
our Galaxy (except for increased velocity dispersion and thickness to assure local stabilitv) were
found to b<, rapidly and gro;slv unstablc to barllkc modes| These modes cause an increase in

K 3 gached when the ratio of kinetic energy
ol' rotation to total grautauonal cnergy dcsmnatcd 1, i1s reduced to the value of 0.14 + 0.02.
Parameter studies indicate that the result probably is not due to inadequacies of the numerical
N-body simulation method. A survey of the literature shows that a critical value for limiting stability
t >~ 0.14 has been found by a variety of methods.

Models with added spherical (halo) component are more stable, It appears that halo-to-disk
mass ratios of 1 to 24, and an initial value of r >~ 0.14 + 0.03, are required for stability. If our
Galaxy (and other spirals) do not have a substantial unobserved mass in a hot disk component,
then apparently the halo (spherical) mass interior to the disk must be comparable to the disk mass.
Thus normalized, the halo masses of our Galaxy and of other spiral galaxies exterior to the
observed disks may be extremely large.

Subject headings: galactic structure — stellar dynamics




Origin of Large Scale Structure

dark
galaxy formation ark CHetsy

Seal ( t) reionization
cale a — dark ages
recombination

reheating

Cosmic Microwave Background

density fluctuations [MEIEEE
i B-mode Polarization

gravity waves

p) 1 sec

neutrinos

! A T.
10 s 3min 380,000 3.7 billion > Lime [years]

Redshift
1010 10¢ 1,100 0 e

< Energy
10" GeV 1 MeV 1eV

Baumann
(TASI 2012)




Expanding Universe

Expansion rate of the Universe: @

- Kinetic Energy o< aZ

Energy density of the Universe:
- Potential Energy o< O

Pmatter o 1/g3

sum from all matter,
radiation and
vacuum energy

Pradiation « 1/a*

PA o« constant



Balance of Kinetic and Potential Energy
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View of the Sun

~8 min. away




Neutrino view of the Sun




Neutrino Masses from Oscillations

0.05eV <

0.009 eV { %

?

Normal

=
-

my

Inverted

3 masses
X
3 flavors
(electron, tau)

The absolute neutrino masses are not known.

It's not known at this time whether neutrinos masses are “Normal” or “Inverted”.
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Cosmic Neutrino Background

TIME (units of seconds)
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Cosmic Elements

3 element theory

v (photons)

v (neutrinos)
p,n (baryons)

4 element theory

v (cold dark matter)

5 element theory (+Aether/Void)
A (dark energy)




Cosmic Elements

= Neutrino
o Tv (K) Temperature
g 109 106 103 1.95 J. Lesgourgues
LI 1 i I I I I I 1
é’ 4 il ndividual neutrino
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7 Matter- !
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le04 Lot 0 0 |
107 107° N 10‘? R
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Tritium [3-decay
(12.3 yr half-life)
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Relic Neutrino Detection

Basic concepts for relic neutrino detection were laid out in
a paper by Steven Weinberg in 1962 [Phys. Rev. 128:3,1457]

Tritium (3-decay
Endpoint

What do we know?
Gap (2m) constrained to

m < ~0.2eV\

from Cosmology

»
»

Electron energy

Electron flavor expected with

m > ~0.05eV —

from neutrino oscillations

Tritium and other isotopes studied for relic neutrino capture in this paper:
JCAP 0706 (2007)015, hep-ph/0703075 by Cocco, Mangano, Messina




Experimental Perspective

Too much rate Need very high energy
(need to filter) resolution (c~m,)

Electron energy

Emitted electron density of states vs kinetic energy for neutrino
capture on beta decaying nuclei. The spike at () + 2m is the CNB signal
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Molecular Broadening
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Molecular Broadening

First Tritiated-Graphene Samples
Produced by SRNL
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Underground Environment




Refractor = Reflector Telescopes
Galilean 2 Newtonian




MAC-E "Telescope”

-

MAC-E filter technique

Magnetic Adiabatic Collimation with Electrostatic filter
Picard et al., NIM B63 (1992) 345

electrode P ——
< o)
< g

) 52 S
solenoid /' &<
|—— /o

source

Uz Uoin

L = const.

PTOLEMY implements a
“reflector” method that is
four orders of magnitude
more compact along the
direction of the B field

ExB Drift
~1m

Filtering of the energy is in the =
vertical direction




The Big Bang
To explain why the universe was expanding, cosmologists began
theorizing in the 1920s that a Big Bang event birthed the universe

from an infinitely dense point 13.8 billion years ago.

Big

Bang

In the early univ
matter S rvy, clumpy
e contfinu
pand fo

But cosmologists observe a uniform early universe, not a clumpy

crumpled one. Something was missing.

Cosmic Inflation
About 30 years ago, cosmologists proposed an updated Big Bang theory

called “cosmic inflation” to explain our smooth, flat universe.

nflation Over billions of ye
esults in btle d
a uniform fluctuatio

unive

But what happened before the Big Bang and where did the original

patch of space-time come from?

The Big Bounce

Recently, researchers have been taking a new look at the possibility

of an expanding and contracting universe that could cycle forever.

The smooth, flat
A clumpy and contracting

https://www.quantamagazine.org/

contracts under S i from fully
flat universe more warped over time,

big-bounce-mOdels-reignite-big- gre CJy:cC;‘t‘)CEpngj!o pands until it contrcizts and starts

noothing out expand instead the cycle cver again

bang-debate-20180131 ‘




The Big Bang

To explain why the universe was expanding, cosmologists began
theorizing in the 1920s that a Big Bang event birthed the universe

from an infinitely dense point 13.8 billion years ago.

In the early universe,

gravity clumps matter The curvy, clumpy
together, immediately universe continues
warping space-time to expand forever. theory

l 1

But cosmologists observe a uniform early universe, not a clumpy

>
7

crumpled one. Something was missing.

begins as a tiny
uniform patch The inflation Over billions of years,
of space-time results in subtle density
that rapidly a uniform fluctuations become
inflated universe, magnified by gravity.

But what happened before the Big Bang and where did the original

patch of space-time come from?

The Big Bounce
Recently, researchers have been taking a new look at the possibility

of an expanding and contracting universe that could cycle forever.

f:i:;::-Quqnta | ' . .

The smooth, flat
A clumpy and contracting

https://www.quantamagazine.org/ wierso tosty  unverses

contracts under  saved from fully The smooth, becoming clumpier and

big_bou nce_mOdels_reignite_big_ pressure, collapsing flat universe more warped over time,

gradually and begins to expands until it contrcizte and starts

bang_de bate_201 80 1 31 smooth‘mg out expand instead ‘ the cycle cvar again

TIME




The Big Bang
To explain why the universe was expanding, cosmologists began

theorizing in the 1920s that a Big Bang event birthed the universe

from an infinitely dense point 13.8 billion years ago. I

Cosmic Inflation

About 30 years ago, cosmologists proposed an updated Big Bang theory
called “cosmic inflation” to explain our smooth, flat universe.

But cosmol

crumpled ¢

(\

.

Big Bang:
The universe

begins as a tiny
uniform patch The inflation Over billions of years,
of space-time results in subtle density
that rapidly a uniform fluctuations become
inflated universe magnified by gravity

| | | .

But what happened before the Big Bang and where did the original

patch of space-time come from? 3 @ new look at the possibility

rse that could cycle forever.

The smooth, flat
A clumpy and contracting

https://www.quantamagazine.org/ wierso tosty  unverses

contracts under  saved from fully The smooth, becoming clumpier and
big_bou nce_models_reignite_big_ pressure, collapsing flat universe more warped over time,
gradually and begins to expands until it contrcizts and starts
bang de bate 201 801 31 smoothing out expand instead ‘ the cycle cve, again

TIME




The Big Bang
To explain why the universe was expanding, cosmologists began
theorizing in the 1920s that a Big Bang event birthed the universe

from an infinitely dense point 13.8 billion years ago.

In the early universe,

gravity clumps matter The curvy, clumpy
together, immediately universe continues
warping space-time to expand forever

| |

But cosmologists observe a uniform early universe, not a clumpy

crumpled one. Something was missing.
Cosmic Inflation

About 30 vears ago, cosmologists proposed an updated Big Bang theory

called

The Big Bounce
Recently, researchers have been taking a new look at the possibility

of an expanding and contracting universe that could cycle forever.

The smooth, flat
A clumpy and contracting

b . universe slowl universe is
2 Quanta !

contracts under  saved from fully The smooth, becoming clumpier and
pressure, collapsing flat universe more warped over time,

https://Www.quantamagazine.org gradually and begins to expands .. until it contracts and starts
big-bounce-models-reignite-big- $nooing ol  expana ntead the cycle over again
bang-debate-20180131 TIME




Big Bang Cosmology

Conformal Time

Adiabatic Density Anisotropies
5~10° atz~1100

Past Light-Cone

Last-Scattering Surface

Inflation

causal contact

Big Bang Singularity

Where we think there is an initial 1=0 Big Bang Singularity is
believed to be the “end” of an inflation period that slowly pulled

out (>60 e-folds a(t)~e"" ) of a “de Sitter’-like spacetime 55




Inflation - Hot Big Bang

end of inflation

Comoving Scales

A

horizon exit

\

horizon re-entry

Comoving

i / Horizon

Inflation

/

|
I
1
[

density fluctuation
j Matter-Radiation
I Equality

(75,000 years)
Hot Big Bang

>

4
What happened here?

Time [log(a)]

Baumann
(TASI 2012)
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Ratz
(Erice 2017)

Inflation - Hot Big Bang

end of inflation

Comoving Scales
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