

High quality Proximity-Coupled Al/Au Bilayer Kinetic Inductance Detectors

<u>Jie Hu</u>, Maria Salatino, Alessandro Traini, Christine Chaumont, Faouzi Boussaha, Christophe Goupil, Michel Piat 26-07-2018

jiehu@apc.in2p3.fr

• B-mode detection: Separate foreground emissions

Kinetic inductance detectors

Mazin, Ph.D Thesis, Caltech 2005

- Photon noise limited
- Naturally frequency multiplexed
- Easy fabrication
- Very wideband
- ➤ With energy resolution

Detectable signal: $hv > 2\Delta(T)$

Energy gap: $\Delta(0) \approx 1.76 k_B T_c$

Common Material in KIDs

	AI	TiN	PtSi	Nb
Т _с (К)	1.2	0.6~4.6	0.9	9.2
$f_{min}(\text{GHz})$	~90	~45	~67	~700
$L_k(pH/\Box)$	1.08 @20nm	7~24 @60nm	10.5 @60nm	0.2 @100nm
Lifetime (μs)	~200	~200	~15	~0.01
Fabrication	Mature	Difficult	Expensive	Mature

Common Material in KIDs

	AI	TiN	PtSi	Nb
T _c (K)	1.2	0.6~4.6	0.9	9.2
$f_{min}(\text{GHz})$	~90	A (~	~7	700
$L_k(pH/\Box)$	1.08 @20nm	∑ 5 Ledu	10 et al 2010	-
Lifetime (µs)	~200	⊕ 4-	<i>xc</i> , <i>ct ui</i> , <i>2010</i>	
Fabrication	Mature	atu		
		3- Uber	/	
		2- Len		
		itical ⁻		
		S o		3 4
			N2 FIUW F	ale (Scolli)

Superconductivity

> Coherence length: $\xi \sim \mu m$

Proximity Effect

When a normal metal is placed close to a superconductor, the cooper pairs can 'leak' into the normal part, making the normal metal superconducting.

The Proximity Effect

- Advantage
 - Lower critical temperature
 - Higher kinetic inductance than AI or Nb
 - Tunable critical temperature
 - Much easier fabrication
- Disadvantage
 - Increasing loss

- α : Fraction of kinetic inductance
- Q: Quality factor
- V: Volume of the resonator

Combinations been investigated

Combinations	Thickness (nm)	<i>T</i> _c (K)
TiN/Ti/TiN	4/10/4	~1.3
AI/Ti/AI	14/33/30	~0.8
Al/Ti	10/25	~0.9
NbTiN/Au	300/10	13.6
Nb/Cu	8/22	1.65

Barends, Daalman et al. 2009 Vissers, Gao et al. 2013 Catalano, Goupy et al. 2015 Dominjon, Sekine et al. 2016 Cardani, Casali et al. 2018

KIDs Design

- Based on NIKA KIDs
- Three different samples

 # 10nm Au 30 nm Al
 # 10nm Au 30 nm Nb
 # 30 nm Al

Fabrication Procedure

4 wires measurement in 300mK cryostat.

- The aluminum starts to become superconducting around 1.2K
- The transition of Al/Au is not sharp as that of Nb/Au

Parameters	Nb/Au	Al/Au	AI
Tc(K)	8.2	0.8	1.28
Resistivity $(\mu\Omega \cdot cm)$	5.17	4.6	1.7
<i>L_s</i> (pH/□)	0.218	1.9	0.6

30

KIDs Readout system

- Pulse-tube based ADR
- Readout by an oscilloscope or VNA
- Magnetic shielding around sample
- Holding time at 100mK: around 4h

Measured Transmission

- ➢ Au/Al Qi~27000
- Au/Al show higher kinetic inductance proportion

Temperature dependence

- The lifetime of Nb/Au is measured by LED illumination
- The lifetime of Al/Au is measured by changing readout power, which is controlled by readout power.

Noise spectrum

The extra noise may originate from the interface between the Al and Au

Further development

- Measuring the aging effect of the Al/Au KIDs
- Optical response measurement for Al/Au KIDs
- Optimize the thickness of the layers
- Deposit the gold only in the inductor part
- Design resonances at lower frequency

- First successful high-quality Al/Au KIDs development and compared with Al and Nb/Au KIDs.
- The kinetic inductance of Al/Au (30nm/10nm) film is measured. The transition to superconducting is relatively wide.
- The lifetime of the Al/Au (30nm/10nm) KIDs is measured to be around 33um
- The measured noise spectrum of the Al/Au KIDs is about 20dB higher than AI KIDs, which may originate from the interface between the AI and Au interface.

Thank You