Demonstration of fine-pitch high resolution X-ray transition-edge sensor microcalorimeters optimized for energies below 1 keV

Kazuhiro.Sakai@nasa.gov

Kazuhiro Sakai (UMBC & NASA/GSFC), J.S. Adams, S.R. Bandler, S. Beaumont, J.A. Chervenak, A.M. Datesman, F.M. Finkbeiner, R.L. Kelley, C.A. Kilbourne, A.R. Miniussi, F.S. Porter, J.S. Sadleir, S.J. Smith, N.A. Wakeham, E.J. Wassell (NASA/GSFC), M.E. Eckart (LLNL), Kevin Ryu (MIT Lincoln Lab), F. Jaeckel, D. McCammon (UW-Madison)

Via

TES

Buried wires

Lynx - Revealing the Invisible Universe

Lynx is...

- 1 of 4 large mission concepts currently studied at NASA (2020 Decadal Survey)
- Next astrophysics flagship mission after WFIRST if selected
- https://lynxobservatory.com

ΔE Measurement with 3 eV EUV photons

- Used an optical 405 nm 'Blu-Ray' laser diode (3.06 eV per photon)
- The laser is at 300 K vacuum space and excited with 1 µs pulses
- Used an optical fiber to deliver photons to the detector
- See Jaeckel et al. (Poster 338) for more details on the measurement
- Due to difficulties in aligning the fiber, only observed 3, 6, and 9 eV lines • Δ*E* = **0.25 eV FWHM** at 3.06 eV

Lynx instruments are...

- High Definition X-ray Imager (HDXI) Si-based
- X-ray Grating Spectrometer (XGS) Si-based

- Main Array (Hydra)
- Enhanced Main Array (Hydra)
 - \rightarrow See Smith et al. (Poster 354)
- Ultra High Resolution Array
 - \rightarrow This study

		Main	Enhanced Main	Ultra Hi Res		
Requirements						
Energy Range	keV	0.2 – 7	0.2 – 7	0.2 – 0.75		
FoV	arcmin	5×5	1 × 1	1 × 1		
Pixel Size	arcsec	1 × 1	0.5×0.5	1 × 1		
Energy Resolution	eV	3	2	0.3		
Count Rate	cps	10 (per Hydra)	10 – 20 (per Hydra)	80		
Sensor Specifications						
Hydra Factor		5 × 5	5 × 5	Non-Hydra		
# of Pixels		86,400	14,400	3,600		
# of TES Sensors		3,456	576	3,600		
Pixel Pitch	μm	50	25	50		
Sensor Pitch	μm	250	125	50		

Fine-pitch TES X-ray Microcalorimeter Array with Buried Microstrip Wires

(inset) Full-range energy spectrum

Filling the Gap between 3 eV and 1.5 keV

- Measured heat capacity at various bath temperatures well above Tc
- Expected 15 fJ/K at 100 mK but obtained 30 fJ/K at 100 mK
- Offset (21 fJ/K) on the measured heat capacity
 - → Contaminations in absorbers?
 - Measured heat capacity at various T_{bath} and a best-fitted linear model

 Measured complex impedance at $T_{\text{bath}} = 42 \text{ mK}$ and obtained α and β Solved the thermal and electrical differential equations to reconstruct a pulse from the measured α and β • Calculated the predicted ΔE in a smallsignal limit using the reconstructed pulse and the measured noise • $\Delta E < 0.3$ eV FWHM for R/Rn < 25% • For 0.5, 0.75, 1.0 keV X-ray, $\Delta T = 3$, 4.7, 6.4 mK using the measured C_{TES} • Predicted $\Delta E < 0.3 \text{ eV}@\text{R/Rn} \sim 2.5\%$ for up to 0.75 keV • ΔE gradually degrades up to ~1 keV or higher

- NASA Goddard and MIT Lincoln Lab are fabricating fine-pitch TES with buried wires
- Microstrip wires are buried under SiO₂ insulation layer
- Fabricated 20-µm size TES with 50-µm pitch
- $46 \times 46 \times 1 \ \mu m$ Au absorber
- 60 × 60 sensors (internal 64 pixels are wired)
- Wire density is capable of wiring all the sensors
- See Chervenak et al. (Poster 94) for more details

(top) alpha and beta vs R/Rn obtained from complex impedance (*middle*) *TES* temperature and *TES* heat capacity vs R/Rn (bottom) Predicted energy resolution vs R/Rn

• $R_{\rm p} \sim 19 \,\mathrm{m}\Omega$

- Very smooth transition and Tc around 55 mK \pm 10 mK @ 42 mK T_{bath}
- At first used commercial X-ray source with an Al target
- Significantly non-linear response at AlKa (1.5 keV) due to out of targeted band

Fine-pitch TES for Higher Energies (>1 keV)

Similar type fine-pitch TES: 12-µm size TES with 35-µm pitch

$\times 10^3$		
$1.4 - FWHM = 1.48 \pm 0.05 \text{ eV}$	 · · · · ·	_
$\sum_{i=1}^{n} 1.2 \begin{vmatrix} \Delta E c = 0.14 \pm 0.01 \text{ eV} \\ c-\text{stat} = 844.5 \\ d \circ f = 137 \end{vmatrix}$		_

• $\Delta E = 1.87 \text{ eV FWHM}$ at AlKa (1.5 keV)

(left) AlKa spectrum (inset) Energy calibration curve (right) Transition curve and alpha curve derived from the transition

• $31 \times 31 \times 4 \mu m$ Au absorber

No buried wires

Very broad transition: 150 mK ± 40 mK • Biased at 2% *R*/*Rn* where $T_{\text{TFS}} \sim 120 \text{ mK}$

• $\Delta E = 1.48 \text{ eV FWHM}$ at MnKa (5.9 keV)

→ Current world record?

Summary

✓ NASA Goddard and MIT Lincoln Lab are fabricating fine-pitch TES with buried microstrip wires for *Lynx* ultra-high-resolution array ✓ Fabricated 50- μ m pitch 20- μ m TES with buried wires and: - Achieved $\Delta E = 1.87$ eV for 1.5 keV and $\Delta E = 0.25$ eV for 3 eV - Calculated the predicted ΔE and obtained $\Delta E < 0.3$ eV for R/Rn < 25% - Expected ΔE of < 0.3 eV for up to 0.75 keV X-ray at R/Rn ~ 2.5%

✓ Fabricated 35-µm pitch 12-µm TES and achieved $\Delta E = 1.48 \text{ eV}$ for 5.9 keV