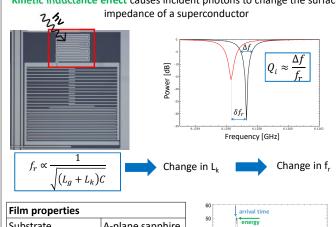

Hafnium for optical and near-infrared microwave kinetic inductance detectors

G. Coiffard¹, M. Daal¹, N. Zobrist¹, S. Steiger¹, B. Bumble² and B. A. Mazin¹ ¹ University of California, Santa Barbara ² NASA JPL

Common Application: High temp super alloy

- constituent
- Neutron moderator material in control rods
- Much recent interest in
- ferroelectric HfO₂for SSD memory apps. And, $\varepsilon_r \sim 20$ for HfO₂!
- WHY HAFNIUM? Low transition temperature $T_{c} \rightarrow increase$ detector response $\frac{\delta f_{r}}{f_{r}} \propto \frac{1}{VT_{c}^{2}}$ Elemental material → easy to deposit from bulk target $\frac{E}{\Delta E} \propto$ $\frac{1}{T_c}$ → Better uniformity and process reproducibility than reactively sputtered materials (TiN, PtSi) V = volume of the resonato $\Delta = 1.72 k_B T_C$ Superconducting gap T_c drops \rightarrow more quasi-particle produced by a photon of fixed energy High normal state resistivity → high surface inductance HAFNIUM DEPOSITION sputter deposition in UHV chamber from a 3 inch hafnium target (P_{base} Kinetic inductance effect causes incident photons to change the surface 1e-9 Torr, 100W DC, gun angel: 19° off ⊥) 32 Hafnium deposited on rotating sapphire substrate (rotation) at 20C. By adjusting sputtering parameters, we can control the film morphology, stress, crystal structure, resistivity, purity g tensile 3,1 mT 400 200 near zero Stress [MPa] 0 stress + compressive -200 -400 -600 1 mT -800 High fr o Change in L_k -1000 Stress as a function of the deposition pressure compressive $(L_q + L_k)C$ 1.5 2.0 2.5 4.5 Pressure [mTorr] stress **Film properties** Hexagonal phase Substrate A-plane sapphire - 3,1mT Hafnium is strongly Thickness 125 nm 10 30 oriented along the c-axis Sheet resistance 6.5 Ω/□ (002) and (004) 20 10 Resistivity 77.5 μΩ.cm → columnar growth Counts 10³ Surface impedance 13.5 pH/□ T_C 360 mK Stress -1095 MPa 10 Single photon detection = pulse 022) 10 Histogram of pulses → Energy/Spectral resolution 45 50 55 60 20 25 30 35 40 65 70 75 2 Theta [deg] Cross section of a 260 nm thick $R = \frac{\lambda}{\Delta\lambda} = \frac{E}{\Delta E}$ film (1 mT recipe) X-ray diffraction pattern of hafnium HAFNIUM ETCH 7 parameters to tune for ICP etch: plasma power, substrate bias power, reactive gas flow (Ar, Cl₂ and BCl₂), pressure, temperature GOAL: get clean etch profile (sidewalls, etch tabs and bottom) Low pressure process \rightarrow need to get volatile chlorine compounds and $HfCl_{4}$ vapor pressure is ~ 0.01 Pa at 45C
 - Temperature and substrate bias are the key!



and "grass" were eliminated

thermalization of the device

18th International Workshop on Low Temperature Detectors

MKIDs RESULTS

5		TIN	PtSi	Hf
	τ_{qp} [µsec]	25	35	80
	Q _i	1,000,000	400,000	200,000
	$\begin{array}{c} R = \frac{E}{\Delta E} \\ \mathbb{Q}_{800 \text{ nm}} \end{array} $	8	8	10

CONCLUSION

- Low base temperature cryostat : work on thermalization ${}^{T_C}/_8 \ 2 \ 45 \ mK$
- · Why are we only getting resonators when using a-plane sapphire and high stress (~-1 GPa) hafnium?

• Using hafnium in x-ray sensor project

Julv 21th – 26th 2019, Milano

Hafnium test devices in its box. Gold bond

pads have been added to improve