Status of the CUPID-Mo bolometric experiment: searching for neutrinoless double-beta decay of 100Mo

D.V. Poda on behalf of the CUPID-Mo Collaboration

CSNSM, Univ. Paris-Sud, CNRS/IN2P3, Université Paris-Saclay, Orsay, France
Institute for Nuclear Research, Kyiv, Ukraine
denis.poda@csnsm.in2p3.fr

100Mo double-beta decay

- **Standard Model two-neutrino decay** ($2\nu\beta\beta$)
 - 327 yr ($\Delta m^2_{31} = 7.1 \times 10^{-5} \text{eV}^2$)

- **Beyond Standard Model neutrinoless process** ($0\nu\beta\beta$)
 - $T_{1/2} > 10^{26}$ yr ($\Delta m^2_{31} = 2.2 \times 10^{-3} \text{eV}^2$)

Advantages of 100Mo $0\nu\beta\beta$ searches

- One of the highest $Q_{\beta\beta}$-values
- Reasonably high natural abundance and industrial enrichment to >95%
- Favorable theoretical predictions
- Developed technology (LUMINEU) of 100Mo enriched crystals batch production
 - Purified molybdenum & ultra-pure lithium carbonate
 - Double crystallization using LTG Cz technique
- High performance & radiopure scintillating bolometers
 - Source-Detector technique: ~100% $0\nu\beta\beta$ detection efficiency
 - High energy resolution: 0.2% FWHM close to 100Mo $Q_{\beta\beta}$
 - Particle identification: >99.9% β-ray rejection in 0$
u$ββ ROI
 - High crystal radiopurity: < 6 mBq/kg of 40K

CUPID-Mo goals & prospects

- At least six-months-long live-time measurements @LSM
- Investigation of 199Li-100MoO$_4$ crystals bulk / surface radiopurity
- New 100Mo $0\nu\beta\beta$ half-life limit & improved $2\nu\beta\beta$ study
- Extension @LNGS or & @LSC
- Extensive demonstration of the 199Li-100MoO$_4$ scintillating bolometer technology, selected for CUPID project (CUORE follow-up; a ton-scale 0$
u$ββ bolometric experiment)

CUPID-Mo background

- Combined spectrum of 19 detectors
 - 3.5 keV FWHM

- Median parameters
 - P_{FWMH} (keV) 1.37
 - Rise time (ms) 24
 - Decay time (ms) 297
 - Signal (keV/MeV) 17.5
 - LY_{γ} (keV/MeV) 0.75

- α/γ separation around 100Mo $Q_{\beta\beta}$
 - 15σ

CUPID-Mo installation & operation

- Assembly @CSNSM & @LAL: Autumn 2018
- Installation into the set-up @LSM: January 2018
- Delay due to cryogenic problems: Spring 2018
- First commissioning: Summer 2018
- Serious cryostat failure: August 2018
- Delay due to cryogenic problems: January 2018
- Second commissioning: Winter 2019
- Continuous data taking at 20.7 mK: since Spring 2019

CUPID-Mo detector performance

- 199Li-100MoO$_4$ crystals bulk / surface radiopurity
- Double crystallization using LTG Cz technique
- Reasonably high natural abundance
- High crystal radiopurity: < 6 mBq/kg
- High performance & radiopure scintillating bolometers
 - Source-Detector technique: ~100% $0\nu\beta\beta$ detection efficiency
 - High energy resolution: 0.2% FWHM close to 100Mo $Q_{\beta\beta}$
 - Particle identification: >99.9% β-ray rejection in 0$
u$ββ ROI
 - High crystal radiopurity: < 6 mBq/kg of 40K

CUPID-Mo detector performance

- Time resolved 100Mo $0\nu\beta\beta$ search
- Thallium calibration (EDWEISS regeneration)
- Continuous data taking at 20.7 mK: since Spring 2019

CUPID-Mo detector performance

- 199Li-100MoO$_4$ crystals bulk / surface radiopurity
- Double crystallization using LTG Cz technique
- Reasonably high natural abundance
- High crystal radiopurity: < 6 mBq/kg
- High performance & radiopure scintillating bolometers
 - Source-Detector technique: ~100% $0\nu\beta\beta$ detection efficiency
 - High energy resolution: 0.2% FWHM close to 100Mo $Q_{\beta\beta}$
 - Particle identification: >99.9% β-ray rejection in 0$
u$ββ ROI
 - High crystal radiopurity: < 6 mBq/kg of 40K

CUPID-Mo detector performance

- 199Li-100MoO$_4$ crystals bulk / surface radiopurity
- Double crystallization using LTG Cz technique
- Reasonably high natural abundance
- High crystal radiopurity: < 6 mBq/kg
- High performance & radiopure scintillating bolometers
 - Source-Detector technique: ~100% $0\nu\beta\beta$ detection efficiency
 - High energy resolution: 0.2% FWHM close to 100Mo $Q_{\beta\beta}$
 - Particle identification: >99.9% β-ray rejection in 0$
u$ββ ROI
 - High crystal radiopurity: < 6 mBq/kg of 40K

CUPID-Mo detector performance

- Time resolved 100Mo $0\nu\beta\beta$ search
- Thallium calibration (EDWEISS regeneration)
- Continuous data taking at 20.7 mK: since Spring 2019

CUPID-Mo detector performance

- Time resolved 100Mo $0\nu\beta\beta$ search
- Thallium calibration (EDWEISS regeneration)
- Continuous data taking at 20.7 mK: since Spring 2019

CUPID-Mo detector performance

- Time resolved 100Mo $0\nu\beta\beta$ search
- Thallium calibration (EDWEISS regeneration)
- Continuous data taking at 20.7 mK: since Spring 2019

CUPID-Mo detector performance

- Time resolved 100Mo $0\nu\beta\beta$ search
- Thallium calibration (EDWEISS regeneration)
- Continuous data taking at 20.7 mK: since Spring 2019