

INSTRUMENT STATUS AT THE BEGINNING OF THE PRELIMINARY DEFINITION PHASE

1. ATHENA IN A NUTSHELL

2. THE X-RAY INTEGRAL FIELD UNIT

Spectral resolution	2.5 eV (E < 7 keV)	Matter assembly in clusters - Jet energy dissipation on cluster scales - Census of warm-hot baryons - Bulk motion down to 20 km/s - Weak line sensitivity - Resolving OVII like triplet
Field of view	5' (equivalent diameter)	Matter assembly in clusters - X-ray cooling cores - Metal pro- duction and dispersal - Jet energy dissipation in clusters - To map nearby clusters out to R ₅₀₀
Pixel size	~ 5" (~mirror PSF HEW)	Jet energy dissipation in clusters - AGN ripples in clusters - Cumulative energy deposited by radio galaxies - Matches structure size and minimizes confusion
Background level	<5 10 ⁻³ count/s/cm ² /keV	Matter assembly in clusters - Metal production and dispersal For low surface brightness sources
Low-energy threshold	0.2 keV	Census of warm-hot baryons - Physical properties of the WHIM - OVII and C V lines at 0.31 keV
High-energy threshold	12 keV	Probing black hole spins and winds, ultra-fast outflows. Fe XXVI absorption line (0.3 c) at 8 keV
Count rate capability	1 mCrab (2.5 eV, 80% eff.) 10 mCrab (2.5 eV, 80% eff.,goal) 1 Crab (<30 eV, 30% eff.)	Probing the WHIM with GRB afterglows, Probing black hole and neutron star accretion & winds - Observation of sources up to 1 Crab intensity levels

- It will be launched in the early 2030's with the newly developed Ariane 6 (64)
- The 7 ton spacecraft will be placed in a L2 orbit
- Athena will provide an unprecedented collecting area in X-rays
 - 1.4 m² at 1 keV and 0.17 m² at 7 keV
 - 5" angular resolution
- The movable silicon pore optics mirror assembly will allow to select one of the two focal plane instruments at a time
 - the Wide Field Imager (WFI) optimized for surveys
 - the X-ray Integral Field Unit (X-IFU) optimized for spatially resolved high resolution spectroscopy [3]

Figure 2: SIM outline ([2] and ESA study team)

WFI

K-IFU

Figure 4: Perseus spectrum seen by the X-IFU simulated for a 100 ks exposure time

Figure 5: X-IFU key performance requirements (see also [4])

Figure 6: X-IFU Focal Plane Assembly (SRON)

- The X-IFU is built under the responsibility of IRAP and CNES by a consortium of 11 European countries plus USA and Japan
- It is a microcalorimeter instrument
 - the microcalorimeter array and cold front stage electronics are integrated in the Focal Plane Assembly, which also provides magnetic field and EMI shielding
 - optimized high transmission thermal and optical blocking filters insure high instrument QE (Fig. 3)
 - a modulated X-ray source (MXS) emitting lines allows gain monitoring during the observations
 - a filter wheel (FW) provides additional filtering for bright sources (open, Be filters, optical filters,...)
- Solution Sector Sec

Figure 7: Prototype TES microcalorimeter array (left) and its supporting wafer (right) (NASA/Goddard)

Figure 8: Reconstructed bulk motion velocity field of the hot intracluster gas for a 50 ks X-IFU observation of the central parts of a Perseus like cluster considered at a redshift of 0.1 [5]

3. X-IFU DETECTION CHAIN AND CRYOCHAIN

Figure 8: Detection chain schematic for one detector readout chain (or channel) [6]

Figure 9: Prototype Digital Readout Electronics board [7]

- The array is read using FDM (Frequency Domain Multiplexing) and AC bias with carrier frequencies between 1 and 5 MHz
- The 50 mK stage is provided thanks to a multi-stage cryostat with active coolers
- first inner shield passively cooled at 200 K by the spacecraft
- five 15K Pulse Tubes (ESA from ALAT)
- two 4K Joule-Thomson (JAXA)
- two 2K Joule-Thomson (JAXA or ESA from RAL)
- a 50 mK hybrid sorption-ADR (CEA-SBT)
- The nominal cold time is 32 hours with a regeneration time of 8 hours (80% duty cycle)
 - on-going optimization of the sub-K cooler recycling will maximize the X-IFU availability for 50 ks ToO (Target of Opportunity observations)

References:

4. ON-GOING OPTIMIZATION AFTER IPRR

Solution The IPRR baseline cryochain totals 22 compressors

- microvibrations control is challenging
- on-going optimization reducing the number of cryocoolers without affecting the performance
- The tradeoff number of readout channels vs multiplexing factor is on-going
 - fewer channels means less connections from 300 K down to 2 K and lighter warm readout electronics
 - larger frequency spacing between channels (presently 100 kHz), corresponding to a smaller multiplexing factor (from 40 down to 34), lessens the constraints on crosstalk between pixels (carrier leakage and intermodulation effects)
- The on-going TES pixels optimization effort is continued to improve the performance under AC bias and Frequency Domain Multiplexing
- Instrument demonstration progresses well toward TRL 5 for mission adoption (11/2021)
 - see below the multiple X-IFU team contributions to this workshop

O-96 - TES pixel optimization for the ATHENA X-IFU instrument

Nicholas, A. Wakeham (NASA-GSFC / UMBC) **O-136** - Characterization of high aspect ratio TiAu TES X-ray microcalorimeters array using the X-IFU Frequency Domain Multiplexing readout Emanuele Taralli (SRON) P-355 - Broad-band, high-resolution, transition-edge-sensor arrays for x-ray astrophysics Stephen Smith (NASA GSFC / UMBC) P-140 - Quantum efficiency study and reflectivity enhancement of AuBi absorbers Ruslan Hummatov (NASA-GSFC / UMBC) P-176 - Characterization of a Ti/Au TES with Au/Bi absorber under AC and DC bias Carlos Pobes Aranda (ICMA) P-351 - Study of TES detector transition curve to optimize the pixel design for Frequency Division Multiplexing read-out Marcel Ridder (SRON) P-132 - Development of a TiAu TES microcalorimeter array as a backup sensor for the Athena/X-IFU instrument Kenichiro Nagayoshi (SRON) P-99 - Progress in the optimal TES pixel design for the X-IFU Frequency Division Multiplexing read-out Luciano Gottardi (SRON) P-97 - Towards a realistic resistive transition model for AC-biased TESs Luciano Gottardi (SRON) P-204 - Properties of the SQUID readout chain under development for the ATHENA X-IFU instrument Jan van der Kuur (SRON)

Figure 10: X-IFU dewar (CNES)

Figure 11: X-IFU cryoflange interfaces (CNES)

Figure 12: X-IFU cryochain (CNES)

22-26 JULY 2019 MILLANO NOTICINAL NO

[1] Athena X-IFU YouTube channel video capture
[2] Ayre et al., 2018, Proceedings SPIE, Vol 10699, 106991E
[3] Barret et al., 2018, Proceedings SPIE, Vol 10699, 106991G
[4] Pajot et al., 2018, 2018, JLTP 193, 901
[5] Barret et al., 2016, Proceedings SPIE, Vol 9905, 99052F
[6] den Hartog et al., 2018, Proceedings SPIE, Vol 10699, 106994Q
[7] Ravera et al., 2018, Proceedings SPIE, Vol 10699, 106994V

O-358 - Updates of frequency domain multiplexing for the X-ray Integral Field Unit (X-IFU) on board the Athena mission Hiroki Akamatsu (SRON)	doll	
0-198 - Advances in time-division SQUID multiplexing for TES X-ray-microcalorimeter arrays		
Malcolm Durkin (NIST)		
P-299 - A 960-pixel X-ray-TES readout platform for Athena X-IFU development		
Bertrand (Randy) Doriese (NIST)		<
P-81 - Thermal crosstalk measurements and simulations for X-ray microcalorimeter array	 _	ali
Antoine, R Miniussi (NASA/GSFC - UMBC)		da
P-128 - Thermal impact of cosmic ray interaction with X-ray microcalorimeter array		tio
Antoine, R Miniussi (NASA/GSFC - UMBC)		3
P-258 - Thermal simulations of temperature excursions on the Athena X-IFU detector wafer from impacts by cosmic rays		J
Samantha Stever (Kavli IPMU, University of Tokyo)		erf
P-249 - Quantifying the effect of cosmic ray showers on the X-IFU energy resolution		Ö
Philippe Peille (Centre National d'Etudes Spatiales)		
O-130 - The Cryogenic AntiCoincidence detector for ATHENA X-IFU: the project status.		
Claudio Macculi (INAF)	ž	
P-172 - The Demonstration Model of the ATHENA X-IFU Cryogenic AntiCoincidence Detector	0	
Matteo D'Andrea (INAF/IAPS)		
P-401 - The phonon mediated TES cosmic ray detector for focal plane of ATHENA x-ray Telescope	ö	
Michele Biasotti (GE)	0	

François Pajot ¹, Didier Barret ¹, Vincent Albouys ², Jan-Willem den Herder ³, Luigi Piro ⁴, Massimo Cappi ⁵, Juhani Huovelin ⁶, Richard Kelley ⁷, Jose Miguel Mas-Hesse ⁸, Kazuhisa Mitsuda ⁹, Stéphane Paltani ¹⁰, Gregor Rau ¹¹, Agata Rozanska ¹², Jiri Svoboda ¹³, Joern Wilms ¹⁴

¹IRAP, Univ. de Toulouse, CNRS, UPS, CNES, Toulouse, France - ²CNES, Toulouse, France - ³SRON, Utrecht, The Netherlands, ⁴INAF/IAPS, Rome, Italy - ⁵INAF/IASF, Bologna, Italy - ⁶Department of Physics, Univ. of Helsinki, Helsinki, Finland -⁷NASA/Goddard Space Flight Center, Greenbelt, USA - ⁸CAB, CSIC/INTA, Madrid, Spain - ⁹ISAS/JAXA, Sagamihara, Japan - ¹⁰Department of Astronomy, Univ. of Geneva, Versoix, Switzerland - ¹¹IAGU, Univ. of Liège, Liège, Belgium -¹²NCAS, Polish Academy of Sciences, Warsaw, Poland - ¹³ASU, Prague, Czech Republic - ¹⁴ECAP, Univ. of Erlangen-Nüremberg, Bamberg, Germany