Progress on a KID-Based Phonon-Mediated Dark Matter Detector

Taylor Aralis, Yen-Yun Chang, Sunil Golwala, Bruce Bumble, Ritoban Basu Thakur, and Osmond Wen
Contact: taralis@caltech.edu

Abstract:
• Status of a prototype dark matter detector being developed at Caltech
• Designed for use with crystalline target m35s
• Utilizes highly-multiplexable kinetic inductance detectors (KIDs) as phonon sensing pixels
• First-pass single-KID resolution measurement of 12. 6 eV for in-KID quasiparticle energy

Motivation
• Using astronomical observations, it can be shown that 85% of matter is dark (non-interacting with EM)
• Direct detection experiments seek to observe dark matter passing through local target masses
• For some targets, dark matter interaction would produce propagating athermal phonons
• Athermal phonons can be observed using detectors such as KIDs
• Direct detection experiments want to maximize search time, mass, and sensitivity while minimizing background events
• Backgrounds which cannot be avoided at runtime should be removed during analysis
• Background removal is aided by additional event information, such as the location of the interaction
• Also of interest is the search for sub-GeV dark matter, where low thresholds (< 1 eV) are required

Multiplexability
• Position reconstruction of a phonon-producing event requires a high detector density
• KIDs are highly multiplexable with simple cryogenic readout
• Fabricate many high-Q KIDs with varying resonant frequencies on one substrate
• Read them all using one feedline and a cryogenic amplifier

Design
• 80 KIDs coupled to 1 coplanar waveguide feedline
• KIDs are aluminum
• \(\Delta \omega = 0.2 \text{ meV} \)
• Feedline is niobium
• \(\Delta \omega_B = 1.5 \text{ meV} \)
• Want phonon energy to be absorbed by KIDs, not feedline
• < 1% of phonons are above \(\Delta \omega_B \) (for NTL phonons) [1]
• 3.0 GHz \(\lesssim f \lesssim 3.5 \text{ GHz} \)
• For CASPER ROACH readout (potential large-scale deployment)
• Overcoupled KIDs
• \(q_1 < q_0 \)
• \(q_0 < q_2 \)
• Need bandwidth > 30 kHz to preserve phonon rise time
• High-resistivity silicon substrate
• 75 mm diameter
• 1 mm thick

Readout
• Flexible GPU and SDR-based readout
• Software developed by Lorenzo Minutolo of Caltech/JPL
• See Lorenzo’s poster (129-49 Session A)
• Uses a server GPU to interface with an Ettus Research SDR
• Low-noise cryogenic HEMT amplifier
• \(~ 2.5 \text{ K} \) noise temperature
• Plan to precede LNA with parametric amplifier currently being developed between Caltech/JPL
• See Peter Day’s poster (156-306 Session B)
• Quantum-limited performance would give \(\tau_N = 150 \text{ ms} \) at 3 GHz

Device Under Test
• Cooled to \(~ 50 \text{ mK} \) in OR
• Can fit 74/80 KID resonances from our current device
• 31 have good fits to Mattis-Bardeen theory
• Describes resonance change with temperature
• Gives kinetic inductance fraction (\(\eta \)) and band gap (\(\Delta \))

Energy Resolution
• Readout is designed to be cryogenic-amplifier-noise limited
• TLS noise is subdominant due to large resonator size, high power-handling capacity, and expected signal timescale (~1 ms arrival and < ~1 ms fall)
• E-h noise is subdominant due to a lack of continuous quasiparticle creation mechanisms
• Expect dissipation change to dominate signal
• Measured using a new in-array self-calibration technique
• See Yen-Yung Chang’s poster (94-407 Session B)
• Found energy resolution \(~ 12 \text{ eV} \) for a single KID on our detector
• Resolution on absorbed quasiparticle energy within that KID
• For an array of \(N \) KIDs, the resolution would degrade by \(\sqrt{N/\Delta \text{min}} \)
• Energy splits among \(N \) KIDs
• \(\eta_\text{min} \): a phonon-to-quasiparticle efficiency factor
• The measured KID has \(\tau_q ^{-1} \approx 23 \text{ ms} \)
• This is low for aluminum
• We believe black-body leakage may be the issue
 • Can be improved with well-designed shielding

Conclusion and Future
• Have taken first device energy resolution measurement for large-array detector type
• Suitable for 10s-100s kg target mass
• Found a single-KID quasiparticle energy resolution of 12.6 eV
• Plan to:
 • Repeat measurement in multiple KIDs and compare
 • Check absolute calibration on energy deposited in substrate using radioactive spectral line
 • Install lower noise parametric amplifier
 • Improve fridge black body shielding to enhance \(\tau_N \)
 • 100 \(\mu \text{s} \) is typical for aluminum
• Also, beginning development of a design optimized for threshold rather than background rejection
• Single KID on a smaller substrate to avoid energy splitting
• Use niobium KIDs for self-calibration technique

This work was supported by the DOE HEP Cosmic Frontier and Detector R&D programs and by fellowships from the Rose Hills Foundation, the Taiwanese National Science Foundation, and the NASA Space Technology Research Fellowship program. The devices were fabricated at the JPL Microdevices Laboratory, which is partially supported by internal JPL funding.

Poster 6-409 LTD18 July 25, 2019