

The Demonstration Model of the ATHENA X-IFU **Cryogenic AntiCoincidence Detector (CryoAC)**

M. D'Andrea¹ • C. Macculi¹ • G. Torrioli² • A. Argan¹ • D. Brienza¹ • S. Lotti¹ • G. Minervini¹ L. Piro¹ • M. Biasotti³ • L. Ferrari Barusso³ • F. Gatti³ • M. Rigano³ • A. Volpe⁴ • E. S. Battistelli⁵

The CryoAC Demonstration Model

CryoAC DM requirements:

- Suspended absorber with 1 cm² active area;
- Low energy threshold < 20 keV;
- Operation at 50 mK thermal bath;
- Power dissipation at 50 mK < 40 nW.

CryoAC DM (AC-S10 sample) specifications

CNR IFN

Parameter

Silicon chip thickness	525 μm
Total chip area	16.6 x 16.6 mm ²
Suspended Absorber area	10.0 x 10.0 mm ²
Beams dimensions	1000 x 100 μm²
Ir/Au TES size (x 96)	50 x 500 μm²
Ir/Au TES thikness	320 nm (Ir 240 nm + Au 80 nm)
Pt heater resistance	307 Ω

Thermoelectric characterization

We have operated the on-board heater to heat the absorber and drive the unbiased TES into the transition, thus evaluating the thermal conductance of the system:

$$G = k n T^{(n-1)} = 34 nW/K @ T = T_{c} = 106 mK$$

$$P_{H} = k (T_{c}^{n} - T^{n})$$

$$k = (6.5 \pm 0.4) \mu W/K^{n}$$

$$n = (3.95 \pm 0.03)$$

$$T_{c} = 106 mK$$

We have acquired two different families of characteristic curves:

 $n\sim4$, as expected in a phonon-mediated material

The use of the heater allows to reduce the TES bias current and the shunt power dissipation. The cost is a loop gain reduction.

#	P _H [nW]	l _{BIAS} [mA]	Ι _{τες} [μΑ]	P _{SHUNT} [nW]	Loop Gain
★ 1	0.00	8.10	181	30.1	195
2 🖈	0.25	6.75	150	20.7	135
☆ 3	0.74	0.80	39	0.3	9

(In each point $R_{TES} \sim 3 \text{ m}\Omega$, $P_{SOUID} = 1.5 \text{ nW}$ and $P_{HEATER} + P_{TES} + P_{PARASITIC} = 0.8 \text{ nW}$)

We have used the on-board heater to stimulate the detector in its whole energy band. We have found:

- Saturation threshold ~ 1.3 MeV;
- Time saturation The Recovery in grows roughly logarithmic with the deposited energy.

After this first stand-alone test performed at INAF/IAPS, the CryoAC DM has been delivered to SRON, for integration at the chipset level with the TES array. This will be the first compatibility test for the two detectors, representing a milestone on the path towards the X-IFU development.

This work has been supported by ASI contract n. 2018-11-HH.0, ESA CTP contracts n. 4000116655/16/NL/BW and n. 4000114932/15/NL/BW. The authors would like to acknowledge the SRON X-IFU FPA team for the support in the development of the CryoAC DM setup, and Giorgio Amico (Sapienza University of Rome) for the production of CryoAC DM brackets.