Updates of frequency domain multiplexing for the X-ray Integral Field Unit (X-IFU) on board the Athena mission

H. Akamatsu (SRON)

L. Gottardi, J. van der Kuur, C.P. de Vries, M.P. Bruijn, J.A. Chervenak, M. Kiviranta, A.J. van den Linden, B.D. Jackson, A. Miniussi, K. Ravensberg, K. Sakai, S.J. Smith, N. Wakeham

X-IFU related contributions

[Talk]	N.Wakeham	: This morning
	M. Durkin	: Just before
	C. Macculi	: Thus
[Poster]	F. Pajot	: 241-162
	S. Smith	: 67-355
	A. Minniussi	: 69-128, 68-81
	C. Pobes	: 71-176
	M. Biasotti	: 101-401
	M. D'Andrea	: 66-172
	C. Kirsch	: 78-247
	W.B. Doriese	: 146-299
	P. Peille	: 162-249

X-IFU related SRON contributions

[Talk]	E. Tallari	: This morning
[Poster]	L. Gottardi	: 79-97, 64-99
	K. Nagayoshi	: 211-132
	M. Ridder	: 172-351
	J. van der Kuur	: 129-204

and all missing contributions and references are HA's fault

Netherlands Institute for Space Research

Athena X-ray Integral Field Unit (X-IFU)

Cucchetti et al. 2018, Barret et al. 2018

Frequency domain multiplexing (FDM)

Multiplexing in frequency domain space Each TES is connected to a LC filter (passive resonator) TESes are biased with MHz alternative current (AC Bias) Signals are summed up at SQUID amp

X-IFU requirements (TBD)

~40 pixels/channel, 96 channels Bandwidth: 1-5 MHz, 100 kHz separation

NASA/GSFC TES X-ray calorimeter & cooler

<u>Moderate-Z</u> TES array (GSFC-A6, A7) C TES size: 100 um² (A6), 120 um² (A7) Normal resistance *R*n~25–35 mOhm Resistive AC loss Weak link (AC Josephson) effect

Cryogenic test-setup

Cryogen free dilution cooler (400 uW@ 100 mK) Nice temperature stability (< 1 uK @ 50 mK) For 18 pixels FDM demo (will be update to 32 pix) Shared with other setups (7 setups in one cooler)

Single pixel performances under AC bias

Early 2018, we introduced quasi-uniform moderate-Z TES array (GSFC-A6) 100 um², dotted coupled, no-T stem and no-stripes ΔE=1.8 eV @ 1.3 MHz ΔE=2.1 eV @ 4.4 MHz Compatible AC bias performances with DC bias (1.6-1.9 eV @ 6 keV: S. Smith et al. 2016, A. Miniussi et al. 2018) Single pixel readout: Bias frequency f=1.25 MHz Single pixel readout: Bias frequency f=4.43 MHz FWHM: 2.07 +/- 0.17 (eV) FWHM: 1.80 +/- 0.17 (eV) 100 100 **Counts: 3322** Counts: 3350 80 80 Counts 60 60 40 40 20 20 Julin Hinds 10 10 Р $^{-10}$ 5.900 5.905 5.875 5.880 5.885 5.890 5.895 5.915.875 5.880 5.885 5.890 5.895 5.900 5.905 5.91 Energy (keV) Energy (keV) **Development of FDM for the X-IFU** H. Akamatsu et al. LTD18 @ Milan, Italy, 2019/07/22 Netherlands Institute for Space Research

Counts

Хq

ΔE=2.6 eV with 9 pixels MUX with GSFC-A6 (100 um²) some pics suffer damaged membrane, 200 kHz separation Room for further tuning, surpassed the 3 eV DM req with a margin

ΔE=2.6 eV with 9 pixels MUX with GSFC-A6 (100 um²) some pics suffer damaged membrane, 200 kHz separation Room for further tuning, surpassed the 3 eV DM req with a margin

ΔE=3.3 eV with 14 pixels MUX with GSFC-A7 (120 um²) 100 kHz separation

Significant degradation from 200 kHz separation case

Further test: 3 pixel MUX experiment

Further test: 3 pixel MUX experiment

ATHENA

Netherlands Institute for Space Research

H. Akamatsu et al. LTD18 @ Milan, Italy, 2019/07/22

Close look of 3 pixel MUX experiment

Close look of 3 pixel MUX experiment

3 pixel MUX with frequency tuning for Ch1

ATHENA

Development of FDM for the X-IFU H. Akamatsu et al. LTD18 @ Milan, Italy, 2019/07/22

Netherlands Institute for Space Research

Issue: Interference from neighbouring pixels

Even two pixels MUX, dE=2.5 -> ~3 eV Voltage/frequency scans show similar results

Issue: Interference from neighbouring pixels

Even two pixels MUX, dE=2.5 -> ~3 eV Voltage/frequency scans show similar results

> TES feels neighbouring bias voltage Electrical band (~*R/L*) is still too large

(J. van der Kuur et al. 2001, 02)

=> Larger frequency separation (from system requirement, no choice for this option)

=> Slower device

(allows to use larger *L* to make detector critically dump) Note: Current devices are a factor 2-3 faster than X-IFU req

[Talk]	N.Wakeham	: This morning	
	E. Tallari	: This morning	
[Poster]	L. Gottardi	: 79-97, 64-99	
	K. Nagayoshi	: 211-132	
	M. Ridder	: 172-351	
	J. van der Kuur: 129-204		

Development of FDM for the X-IFU H. Akamatsu et al. LTD18 @ Milan, Italy, 2019/07/22

Netherlands Institute for Space Researc

Summary

Together with uniform GSFC array, improved LC filter, SC transformer, Successful demonstration of 9/14 pixels FDM readout Performances as expected for the current available components:

Δ*E* @ 1.3 MHz ~ 1.8 eV Δ*E* @ 9 pixs ~ 2.6 eV Δ*E* @ 14 pixs ~ 3.3 eV

- <= Compatible with DC bias
- $\Delta E @ 9 \text{ pixs} \sim 2.6 \text{ eV} <= \text{Good for DM across } 1.4-4.7 \text{ MHz}$
- ΔE @ 14 pixs ~ 3.3 eV <= Origins of the degradation are identified

These progress confirm that following items are well defined and realistic1.) understanding of the detector and read-out performance2.) path to further improve the multiplexing and energy resolution

The FDM systems are well under-control and related issues are identified

