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Far-IR astrophysics is a final frontier in the electromagnetic
spectrum, but requires ultrasensitive direct detectors.
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+ w/ potential JPL provision of

* SPICA

Now in phase-A at ESA —a
candidate for Cosmic Visions
M5. 2.5m cooled observatory

far-IR detectors. Launchin
2030.

* GEP

Galaxy Evolution Probe. Under
study @ JPL for submission to
Decadal. 2.0 m telescope.

- Similar to SPICA, but potentially

more capable for mapping with
long-slit spectrometers

* Origins

Origins Space Telescope -- Far-IR

flagship under study for NASA
submission to 2020 Decadal.
Key tall poleis detectors. JPL
technology and science
experience positions us for
instrument and/or mission

2030s.

leadership. Start 2020s, launch
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SPICA

|  ESA /JAXA collaboration, 2032 launch.
* Inphase-A study at ESA now.

Science _ :
Instrument * JAXA commitment in place.
Assembly * 2.5 meter telescope actively cooled to

(SIA) below 8 K
*  Sumitomo closed cycle 4.5K, 1.7K coolers
*  Planck-like thermal design.

~Payload |« European-led SAFARI multi-purpose far-

Module IR spectrometer with US contribution.
(FLM) * Wide-field mid-IR instrument which
complements JWST (JAXA).
~Cryogenic
Assembly

(CRYO) S5 —
_. B

. [ :
SeNI ce Cryo System

Module . | .

; Figure 5-1 Baseline plan for the distribution of responsibilities over
Sun (-z axis)

the major project partners
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US Contribution ‘BLISS’ =
Two Grating Detector Modules for SAFARI/SPEC

SPICA 2.5 M Telescope
|v||nner HousiV\ FPM Support Structure 10 cm
agnetic
SAFARI Instrument , outer Shield ///\ ' ,4_' 7 Focal Plane Module
Interferometer Offner Relay - ' Magneti P = i
) gnetic ~ , e , Kevlar Suspension
Module ~ —« (w/Beam Steering <&  Cal Source ' Shield s =< = pC timati
- | S ollimatin
(High Res) erior) SZ Mirror
; (;rid and Dichroic; ; } P I\Z(r)rlgr
= 5 .. E = 7,
w E i € < 2 @3
%c? % ‘C_D %’ 2; 2] g Grating St
< o o o - O Optical Bench Imaging Mirror
5° | 33 S

BLISS-0010

* SAFARI/SPECis a suite of four grating
spectrometer modules which combine to
cover the full wavelength range
instantaneously.

e US buildstwo of the four wideband
grating modules, including TES detector
arrays.

* SRON supplies (passive) cold multiplexer
elements.
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BLISS FPA Concept

Filter Clamp

Bandpass Filter
Feedhorn Block

Housing Front

50 mK SQUIDs (6)

Detector Subarrays (4) and
Detector Backshort Chips (4)

LC Filter Chips (12)
Spring Clips (8) SQUID PCBs (2)

Silicon detector subarrays are bonded to silicon backshort chips, which are then bonded to a silicon carrier wafer to which the silicon
LC chips and silicon 50 mK SQUID amplifiers (components of the multiplexing system) are also mounted. The entire silicon assembly
is then epoxied to the aluminum FPM housing backplate with a molybdenum plug. Two additional Mo plugs on the backside of the
wafer assembly fit into slots in the backplate to provide a rotational constraint while allowing for thermal expansion mismatch between
Si and Al. Beryllium-copper spring clips around the periphery of the silicon assembly hold down its edges to prevent motion under
launch loads. A pair of printed circuit boards (PCBs) containing the bias resistors, RF filtering, and connectors is also attached to the
housing backplate and wirebonded to the wafer assembly.
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Historical JPL low-NEP measurements

10"
Absorber

(metallized :
SiN mesh) o\ Support beams,

0.4 x 0.25 x 1000 pm

NEP (W, rtHz)

0.0 0.0 103 100 100.00

* SiN micromesh structure with 1 mm legs (Beyer el at, 2011)
* MoCu Thermistor
 NISTTDM SQUID MUX

* Measured NEP below 1 x 101° W/y/Hz, but device is slow — we believe due to XeF2
etch creating excess surface states.
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Heat capacity Improvement with Wet release

10°F ¢& Dry Release
® Wet Release
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Pt thermometer
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1800um
long
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Pt heater

C,
Team Bilayer ¥
. . e . . 10—18
Source Member Process (am/nm) Ciot (FI/K) Chitayer (I/K)  Csix (TI/K) J/(um3K)
Wet Ti/Pt
Ref. [1] JPL Release (2/50) 153 9 6.3 0.40
Wet Ti/Pt
Ref. [1] JPL Release (2/50) 12 9 3 0.31
Dry Ti/Pt
Ref. [1] JPL Release (2/50) 155 9 146 43
Dry Ti/Pt
Ref. [1] JPL Release (2/50) 180 9 171 5.0
Not Dry Ti/Pt
published JPL Release (2/50) 132 9 131 3.7
Wet Ti/Au
Ref. [2] SRON Release (2/50) - - - 0.38
Wet Ti/Au
Ref. [3] SRON Release (2/50) - - - 0.26
M. Kenyon



Updates on US detector progress
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Zoom into show individual pixel.

Metallic elements (Ti Au TES and Ta absorber) following
SRON

5x55 sub-arrays with suspension suitable for BLISS
sensitivity. Very good electrical & mechanical yield
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New Wet-release JPL array for BLISS
SAFARI

Short-A style

990 um
(Spectral)

e Support Ti/Au Ta Absorber

Figure E.1-6. (photograph a) Prototype 5 x 55 detector subarray with 94% pixel yield. (micrograph b)
Prototype demonstrates design value spatial pixel pitch (4.2 mm) and a spectral pitch (0.99 mm) that is
smaller (harder) than the 1.1 mm design value. (micrograph c) Bolometer design is identical for both GMs,
all subarrays, and all pixels within a subarray. Four 0.35 pm wide x 0.25 um thick x 2 mm long silicon
nitride legs provide thermal isolation to a silicon nitride island. A 300 um x 300 pm x 8 nm tantalum film
couples to incoming radiation with low heat capacity. The thermistor is a superconducting 50 um x 50 um
Ti(40 nm)/Au(150 nm) bilayer. The series titanium thermistor was not included in this prototype.
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Titanium — gold Thermistors
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New JPL Testbed being commissioned.
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Wiring Harness — shielded twisted pair

Tekdata harness
w/shielded twisted pairs

Top flange—\ W R
- | ITTTT
| MWM2L-
60K flange 37SSB
upports S
= 60K 176 mm
4K flang /Su; R
Still plate — | 5 | =
> 4K 277
s
Cold Plate: jums]
. - still
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Manganine pair : il @l
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550um [ 650um =N Hs /o P B
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Shielded twisted pair would be ideal for flight 37SSB
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TES bias circuit modeled
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TES bias circuit modeled
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Anticipated device performance.
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* Basic NEP already demonstrated

* Wet release process should improve speed by factor of 30.
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Looking forward
* Demonstrate and integrate the SRON FDM readout
system at 1-5 MHz
* Demonstrate dark NEP with Ti/Au 5x55 subarray
e Optical NEP demonstration
* Environmental testing (thermal, dynamics)

e Cosmic ray response
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