The AMoRE- II Cryostat

Chan Seok Kang on behalf of AMoRE collaboration

Center for Underground Physics Institute for Basic Science

AMORE collaboration

Advanced Mo-based Rare process Experiment

Neutrinoless Double Beta Decay

Phase of AMoRE Experiment

finished

AMoRE- I preparing

AMoRE-П Final goal

Detector : scintillating crystals and MMC

Scintillating Crystal (⁴⁰Ca¹⁰⁰MoO₄)

- enrichment of ¹⁰⁰Mo >96%, 3 MeV Q-value
- depleted of ${}^{48}Ca < 0.001\%$
- detection of heat & light signal

→ discrimination of alpha and beta/gamma

$$T_{1/2}^{0\nu}(\exp) = (\ln 2)N_a \frac{a}{A}\varepsilon \sqrt{\frac{MT}{b\Delta E}}$$

b = background index in cts/(keV kg y) $\Delta E = FWHM energy resolution at Q_{\beta\beta} in keV$ M = mass of detector in kg, A = mass number of candidate material $\epsilon = detection efficiency at Q_{\beta\beta},$ $a = \beta\beta isotope fraction (Enrichment),$ T = measured time in years

Metallic Magnetic Calorimeter (MMC)

Temperature sensor : paramagnetic (Au:Er) + SQUID

Energy (ΔE) \rightarrow Temperature (ΔT) \rightarrow Magnetization (ΔM) \rightarrow Magnetic flux($\Delta \Phi$) \rightarrow Voltage

deposited energy \rightarrow increase of temperature

γ : 0.3 keV (FWHM) @ 60 keV α: 0.9 keV (FWHM) @ 5.5 MeV <u>superior performance</u>

AMoRE detector

AMoRE detector and refrigerator

Present experimental set up

- Single detector module : 80 X 80 X 80 mm
- Detector tower : 6 single detector modules (4.2 kg)
- Internal radioactive shield : lead shield (172 kg) + copper support (39 kg)
- Superconducting shield : lead cylinder with copper frame (5.76 kg)
- Vibration damper : copper plate and supports (29 kg)
- Total mass for experiment : 250 kg

Present refrigerator

- Refrigerator : Leiden cryogenics, 1.4 mW @ 120 mK with 1 PTR (PT415)
- Experimental space : 408 mm (D) X 690 mm (H)
- AMoRE- I : ~ 5.8 kg of crystal, 3 ~ 4 detector towers
- Enough size and cooling power for AMoRE- I

AMoRE-II detector and refrigerator

AMoRE-II set up

- 100Mo base crystals : CMO, LMO, ..., etc, total 200 kg net mass of ¹⁰⁰Mo is 100 kg
- Detector module : 80 X 80 X 80 mm with ~400 g of crystal
- Detector tower : 8 detector modules
- Detector array : 64 detector towers
- Long S.C shield to get shielding efficiency
- Experimental space : 1000 mm (D) X 1950 mm (H)
- Detector temperature : < 10 mK
 - Big and powerful dilution Refrigerator
 - Three PTR (PT420 RM)
 - 2.4 mW @ 120 mK, > 5 uW @ 10 mK

Mass for overall system

1. Dilution fridge

Temperature	Plate (mm) (OD X T)	Mass of plate (kg)	Shield can size (OD X L X T)	Mass of shield cans (kg)
300 K	1,420 X 40	500	1370 X 3098 X 4	680 for STS
50 K	1,320 X 30	350	1288 X 2874 X 4	500
4 K	1,240 X 30	320	1200 X 2650 X 8	750
Still	1,160 X 30	280	1165 X 2422 X 1	100
50 mK	1,080 X 30	240	1085 X 2171 X 1	85
M.C	1,000 X 30	210		
	Total	1,900		2,115

2. Experimental setup

Set up	material	Dimension (mm)	Mass (kg)	total
Radiation shield	lead	996 X 250	2200	
shield support	Copper	998 X 20	140 X 4	
Detector	crystal	60 X 60	200	2.6.ton
	Copper	80 X 80 X 80	~ 500	~ 3.0 1011
Superconducting	lead	980 X 1200 X 2	~ 100	
shield	Copper	985 X 1205 X 4	~ 50	

Mass for overall system

1. Dilution fridge

		(OD X L X T)	cans (kg)
420 X 40	500	1370 X 3098 X 4	680 for STS
320 X 30	350	1288 X 2874 X 4	500
	420 X 40 320 X 30	420 X 40 500 320 X 30 350	420 X 40 500 1370 X 3098 X 4 320 X 30 350 1288 X 2874 X 4

Physically and thermally too heavy and massive

shield support	Copper	998 X 20	140		
Detector	crystal	60 X 60	200	2.6 ton	
	Copper		~ 500	~ 3.6 ton	
Superconducting	lead	980 X 1200 X 2	100		
shield	Copper		50		

Mass for overall system

1. Dilution fridge

Temperature	Plate (mm) (OD X T)	Mass of plate (kg)	Shield can size (OD X L X T)	Mass of shield cans (kg)
300 K	1,420 X 40	500	1370 X 3098 X 4	680 for STS
50 K	1,320 X 30	350	1288 X 2874 X 4	500

Special holding structure and precooling system

shield support	Copper	998 X 20	140	
Detector	crystal	60 X 60	200	2.6 ton
	Copper		~ 500	~ 3.6 ton
Superconducting	lead	980 X 1200 X 2	100	
shield	Copper		50	

Holding structure for heavy mass

1. 300 K – Still (~ 100 mK)

- STS 316 rod : 6 mm (dia), tensile strength > 1.47 ton, 8 mm(dia), tensile strength > 2.62 ton
- STS rod connected with vibration damper at 300 K and go into fridge via clear shot
- STS rod thermally linked at each temperature plates, 50 K, 4 K, Still

2. Still - experimental setup

- 6 mm Kevlar rope : strong enough, tensile strength > 4.31 ton
- Very low thermal conductivity at low temperature : ~ 4 X 10⁻² W/mK @ 4 K, ~ 4 X10⁻³ W/mK@ 1 K
- connected with STS rod at 4 K and hold all experimental setup

Heat load by structures

1. Thermal radiation

Stage	Material	Diameter (cm)	Length (cm)	Radiation (plate)	Radiation (can)	Total Radiation
300 K	STS (316)	176.8	3.98			
50 K	OFHC	128.8	145.7	41.2 W	228.2 W	310 W → 30 ~ 78 W
4 K	OFHC	123	128.7	0.005 W	0.0435 W	0.054 W

emissivity \rightarrow 30 layers of superinsulation (MLI)

2. Heat load by wire and SQUID

- CuNi (alloy 30, Cu 70% + Ni 30%), D = 100 um, L = 2 m, 10,000 strands

- Assumed the SQUID bias current with 15 uA (1,000 SQUID's)

Stage	source	Thermal conductivity (W/K [.] m)	Electrical resistivity (Ω·m)	Conduction Heat load (mW)	Electrical Heat load
300 K	CuNi	30	5.0 X 10 ⁻⁶	-	
50 K	CuNi	< 30	3X10 ⁻⁷	< 1,324	
4 K	CuNi	0.52	3X10 ⁻⁷	4.143	0.15 mW
Still	S.C wire	-	-	-	-
50 mK	S.C wire	-	-	-	-
M.C	SQUID	-	-	-	5 nW

Heat load by structures

3. Conduction by feedthrough (lead wires and supporting structure)

Stage	Surface area (mm²)	Length (mm)	Heat load (mW)
50 K	260	199	< 3.90 X 5
4 K	4260	161.2	< 7.06 X 5

- 81 mm diameter clear shot : STS tube and copper flange

4. Conduction by holding structure

Temperature	material	Diameter (mm)	Length (cm)	Heat road
300 → 50 K	STS 316 LN	8	15	3.95 W X 3
50 K → 4K	STS 316 LN	8	15	0.32 W X 3
	STS 316 LN	6 or 8	15	522 uW X 3 or 928 uW X 3
4 K 7 Still	G11	8 or 10	15	304 uW X 3 or 475 uW X 3
Still → 50 mK	Kevlar	6	15	6.4 nW X 6
50 mK → M.C	Kevlar	6	12	N/A

Heat load by structures

Total expected heat load

Temp	radiation	conduction	Wire	3He -circulation	Total
300 → 50 K	78 W	~ 11.9 W	1.30 W		91.2 W
	0.054 W	~ 0.995 W	4.14 mW	Nor 1.43	2.48 W
50 N / 4N	50 K 7 4K 0.054 W			Cond 4.3	5.35 W
4 K → Still	-	0.912 ~ 2.78 mW	S.C wire	-	0.912 ~ 2.78 mW
Still → 50 mK	-	38.4 nW	S.C wire	-	38.4 nW

Heat load and cooling power

Temp	Cooling source	Cooling power	Total Heat load	
50 K	3 ea PTR	~ 150 W	~ 91.2 W	
A K	3 og DTD	5.4 W	Nor 2.48 W	
4 N	3 ea PIR		Cond 5.35 W	
Still	DR	2.4 mW	0.912 ~ 2.78 mW	
50 mK	DR		Several tens mW	
M.C	DR	>5 uW	~ 5 nW	

Pre-cooling system

1. Expected Cool down time with 3 PT420 RM

Approximately 20 days to reach 4 K from 300 K without LN₂ cooling

Vibration

- 1. Isolation of detector system with vibration source by using special holding system
 - Connecting holding structure with damping system on room temperature
- 2. PTRs
 - Mechanically decouple with dilution fridge : super bellows and copper braids
 - Synchronization of PTR unit, linear driver
- 3. Additional damping system : Spring Suspended Still (SSS)
 - mechanically decouple between 4 K plate and still with spring and eddy current damper
- 4. Soft connection the detector array with Dilution refrigerator
 - 4 steps of vibration damping

New Underground lab

Overall experimental structure

- lead : 25 cm thickness, 73.2 tons
- 1st side PE : 30 cm thickness, 10.7 tons
- 2nd side PE : 40 cm thickness, 16 tons
- Bottom PE : 40 cm thickness, 7.4 tons
- 1st top PE : 30 cm thickness, 14 tons
- 2nd top PE : 40 cm thickness, 25.8 tons
- Borated PE : 3 cm thickness, 3 tons
- Totally 150 tons
- 10⁻⁵ counts/KeV/kg/yr @ 3 MeV

Thanks to

Carlo Bucci Matthias Buehler Antonio D'Addabbo Paolo Golar Andreas Reiser

Posters about AMoRE experiment

- Poster No 103 : 23rd. July.

Low temperature measurement on directional dependence of phonon-scintillation signals from a Zinc tungstate crystal, JA, Jeon

- Poster No 104 : 23rd. July. Development of Neganov-Luke light detectors for a rare event experiment, JA, Jeon
- Poster No 111 : 23rd. July.

MMC critical temperature switch development with an integrated heater, Sora Kim

- Poster No 218 : 23rd. July.

Development of low threshold detectors for light dark matter detection, Hyelim KIM

- Poster No 264: 23rd. July.

The AMoRE Pilot experiment, Kyung Rae Woo

- Poster No 278 : 23rd. July.

Stabilization heater for AMoRE, Do Hyung Kwon

- Poster No 216 : 25th. July.

Li2MoO4 phonon-scintillation detection system with MMC readout, Hyelim KIM

- Poster No 245 : 25th. July. Detector Design for AMoRE-I, HAN BEOM KIM
- Poster No 268: 25th. July. MMC development for the AMoRE project, Sang Goon Kim

Neutrinoless Double Beta Decay

- 0*n* DBD is forbidden by Standard Model for lepton number violation.
- If neutrino is a majorana particle, 0*n* DBD is possible.
- We will be able to define the neutrino type and absolute mass.

AMoRE-pilot experiment : shielding

Overall structure of AMoRE-pilot

 first shield : normal lead ~ 50 Bq/kg, ~ 1 ppt for U/Th surround a refrigerator system including AMoRe-pilot detector weight 16 tons

- second shield : µ-metal can to prevent magnetic noise
- third shield : thick STS can and Cu can (OFE) inside a refrigerator system weight ~ 580 kg
- fourth shield : low background lead and Cu (NOSV)
 < 0.3 Bq/kg for Pb 210
 ~ 1 ppt for U/Th
 weight ~ 160 kg (lead), ~ 30 kg (Cu)
- fifth shield : superconducting shield low background lead

Tensile force experiment

Pre-cooling system

2. Expected Cool down time with Stirling cooler

- Stirling cooler (SPC-1T)
- cooling with cold Helium gas and cryofan
- 80 W @ 15 K cooling power

- Pressure of system : 1 bar
- Around 3 ton @ 10 mK region

Direct cooling with cold gas

 ΔT between crystal and cold gas : 10 K

Cool down time of present setup

 $5 \sim 6$ day with one PTR from 300 to 15 K

