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MMC Calibration
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*  MMCs have very little “personality U

* magnetization-based thermometer
— equilibrium thermodynamic property
— less sensitive to process conditions

* absorber and heat flow path are
normal-metal

14 Ag:Er pixels,
“integrated” design

* linear with a small quadratic term

— quadratic correction ~100 eV at 100 keV 8 Ag:Er pixels,

“split” design



MMCs versus literature
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 What'’s different between the two devices? everything.

— device geometries, fabs, temperatures, source-detector
geometries, SQUIDs, and readout electronics



previous exploratory MMC

* “integrated” MMC

— SQUIDs and Sensors on same chip

— always the best performance, if you can
keep the paramagnet cool

* paramagnet: Ag:Er
 7SQUIDs for 14 pixels
e 1SQUID for on-chip thermometer
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New MMC designs

1o . . “split” designs, up to 30 pixels
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167Er=23%

e also:

* new “integrated” designs
— 10 keV <5eV @ 30 mK
— direct-coupled




New devices still in fab

e wafer-scale fab of new MMCs
completed in February

* problem with paramagnet depo

system
— solved problem last week@
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SQUID Design and Test

* new family of SQUIDs matched to “split” sensor designs
— series flux transformers
— with and without isolated feedback coil (Magnicon)

FLL via washer
est. 25.6, meas. 26.4 pA/®,
3.8 u®,/rt Hz @ 4K
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Can we keep an “integrated” MMC chip cool?

* semi-quantitative model

— metallic conduction
* Wiedemann-Franz

— phonon conduction
e thermal boundary resistance

- Q= O-A(Tﬁ}ot _ Tg}old)
* recent NASA data o ~75
W/m?/K>
* on-chip thermometer

— one SQUID of the 8 is

configured as a paramagnetic
thermometer

e simple uncapped meander
e paramagnet only on one side

Thermal conductance (nW/K)

| Appl. Super. 29,
1 2300206 (2019)

fit: gp(T)=5542.3 nW/K* x T3
gb/(AxT3)=0.030 W/cm?/K4

Yoon et al., Trans.

T 1 T
20 40 60
Temperature (mK)

I
80

U
100




Can we keep integrated MMC cool? &
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Can we keep an “integrated” MMC chip cool?

* Establishing metallic thermal contact between chip and
cryostat?

— try: electrically-conductive epoxy

absorber Hthermal bus




Can we keep an “integrated” MMC chip cool?

* Establishing metallic thermal contact between chip and
cryostat?

— try: electrically-conductive epoxy

* avoid die breakage

f\




MMCs (still) look great for high-accuracy gamma
spectroscopy and nuclear data improvement

— see also Geon-Bo Kim’s poster “A New Measurement of the 60
keV Transition in Am-241 Decays using MMC” 269-276

new devices still in fab, but hopefully REAL SOON NOW

— wafer-scale processing completed

— sensor-matched SQUIDs look good
modeling development

we may be able to keep integrated MMCs cool with
minimal process development



