

Compact spectroscopy imaging detectors for astrophysical applications

Sophie BOUNISSOU

Collaboration: CEA Paris Saclay / CEA LETI L. Rodriguez, A. Poglitsch, C. Delisle, V. Revéret, J. Martignac, J-L Sauvageot, O. Adami L. Dussopt, G. Lasfargues, A. Aliane, V. Goudon

I will not talk about ...

365. L. RODRIGUEZ → On-chip polarimetry for the SPICA B-BOP instrument
 367. O. ADAMI → Highly sensitive detectors for the B-BOP instrument

34. A. ALIANE → Design, simulations and fabrication of highly sensitive cooled silicon bolometer for millimetre wave absorption

On-chip polarimetry & silicon bolometers

But ... compact spectroscopy imaging detectors

But ... compact spectroscopy imaging detectors

Compact spectroscopy imaging detectors

• Choice of the spectrometer:

- Scientific applications:
 - High Resolution \rightarrow Mapping fine-structure lines (as [CII] at \sim 160 μ m)
 - Low Resolution → CMB surveys (combined with polarization?)

Fabry Pérot Interferometer (2)

 $H(LH)^2$

Dielectric Bragg mirrors improve mirrors reflectivity

- Successive layers of high refractive index material (H) / low refractive index material (L)
- λ /4n thickness

Fabry Pérot Interferometer (3)

→ Focus on a etalon (rather than the tunable FPI) to work on optical issues Foreseen performances from simulations

In practice ... (2)

<u>Measurement with a Time-Domain Spectrometer (TDS) at room temperature</u>

- Shift between simulations and measurements probably due to actual material thicknesses (need for sub-µm precision)
- Transmission peak at 320 µm not resolved by the TDS

Simulations only based on thin film theory 10 🗸

In practice ... (3)

Measurement with a Martin Puplett Interferometer at cold T (77K)

* Optical filtering (Band-pass) to remove everything except the $\sim 320~\mu m$

Conclusions & Perspectives

Promising coupling between the FP spectrometer and the detector

 \succ FP for high resolving and high transmission spectroscopy \checkmark

- \geq Efficiency of the coupling detector/ FPI \rightarrow To be experimentally confirmed (Summer 2019)
- > Tunability: add the cryo-motor (PZT) above the detector to tune the upper mirror

 \rightarrow OK for narrow-band spectroscopy but what about wide-band spectroscopy ?

Multiplex Fabry Pérot Interferometer
Fabry-Pérot as several FTS at different spectral resolutions

→ Still under investigation ...

Fig. 2. Illustration of the carrier frequency for each harmonic passing through the étalon. Each of the harmonics is equivalent to a single Michelson interferometer. (Havs 1991)

Water Jet laser

