DESIGN AND OPTIMISATION OF THE MICROSTRIP-COUPLED LUMPED-ELEMENT KID

LTD18 - 22nd July 2019

PETE BARRY TOM CECIL CLARENCE CHANG SIMON DOYLE AMBER HORNSBY KIRIT KARKARE ERIK SHIROKOFF AMY TANG

SOME CONTEXT...

- Motivation: want simple, drop in replacement for TES for multi-chroic detector arrays
- Challenging to readout fully sampled focal planes with TES arrays at high frequency

1 1 7

SOME CONTEXT...

- Motivation: wanted simple, drop in replacement for TES for multi-chroic detector arrays
- Challenging to readout fully sampled focal planes with TES arrays at high frequency
- Example (CMB-S4 DSR RD):

Bands	Lenses	Field of view	Min. edge taper	Modulation (Pole/Chile)	Detectors / tube	Tubes
30 / 40	$2 \times 55 \mathrm{cm}$ Al	29°	-9.3 dB	scan	576	2
85 / 145	$2 \times 55 \mathrm{cm}$ Al	29°	$-6.2\mathrm{dB}$	scan / HWP	7048	6
95 / 155	$2 \times 55 \mathrm{cm}$ Al	29°	<u>-8.4 dB</u>	scan / HWP	7048	6
220 / 270	$3 \times 44 \mathrm{cm}$ Si	3 5°	-13.4 dB	scan / HWP	16876	4
total:					153,232 detectors, 18 tubes	

 Table 4-14.
 Summary of small-aperture telescopes for the reference design.

■ With proposed mc-lekid design→ 2 cryostats

Use additional focal plane space to increase sensitivity at primary CMB bands

MICROSTRIP-COUPLED LE-KID

Simple broadband galvanic mm-wave coupling

DETECTOR OPTIMISATION

- Unlike traditional direct absorbing le-kid, the constraints on the film resistivity are relaxed
 - Couple to microstrip mode Z0 instead of free-space
 - From a mm-wave perspective, a lower resistivity is favorable
 - Al is lossy \rightarrow as thickness increases, Im(Z0) \rightarrow 0
 - → better mm-wave match
- Reduction in Rs requires longer length to absorb mm-wave signal
 - Resonator frequency increased due to lower Lk, but reduced for given Z0
 - In addition, increases Qi (multiplexing) and tau_qp (sensitivity)
 - Lk ~ Rs
 - alpha_k reduces → <u>OK/required for high loading!!</u>
 - Take away point:
 - All quantities are interrelated require holistic approach to optimization

DETECTOR OPTIMISATION - NEPS

HORN COUPLED OMT DESIGN

PROTOTYPE DEVICES

- Fabrication of first released devices now completed (see A. Tang poster for all the details...)
- Optical testing to begin immediately

SUMMARY

- Microstrip-coupled lumped-element KID is a promising path toward drop-in replacement for TES bolometers
 - Particularly motivated at high-frequencies
- Prototype lens-coupled twin-slot antenna devices demonstrated principle works, but highlighted issues
- OMT-coupled design will mitigate this
- First round of fabrication complete
- Full optical testing to begin soon

EXTRA SLIDES

PROTOTYPE RESULTS

- Demonstrated that optical coupling scheme works!
- But, identified that stray/direct pickup is an issue

K015/K016 - 100 mK, 28 dB

mm-wave input from antenna

DETECTOR OPTIMISATION – PARAMETERS

- Simulation calculates n_{qp} (P_{opt}, P_r, T_b...etc)
 - Constrain problem by requiring inductor length is sufficient enough to absorb < 20 dB

LENS-COUPLED DEVICES

- Simple prototype devices to test concept
- Demonstrated that dielectric over inductor has minimal effect on resonator loss

EXTRA SLIDES

Array of wire bond pads for the PolarBear2 detector array with a wire bond head. Pads are 90 micron wide with 10 micron gap between pads

