Poster ID: 149 - 109 Microwave SQUID multiplexer for readout of optical TES array

N. Nakada^{1, 2}, K. Hattori¹, Y. Nakashima^{1, 3}, F. Hirayama¹, R. Yamamoto¹, H. Yamamori¹, S. Kohjiro¹, A. Sato¹, H. Takahashi², D. Fukuda¹ ¹National Institute of Advanced Industrial Science and Technology (AIST) ²The University of Tokyo ³Japan Aerospace Exploration Agency (JAXA)

Introduction

 Development of photon counting device with optical transition edge sensor (TES) for biological imaging.

 $^{\circ}_{>} 0.5$

Bias chip

wave-guide

[×10⁹]

PCB

CPW

Result & Discussion

Voltage-Current characteristics measured by MW-Mux reproduced that of dc-SQUID.

- ✓ Reduce imaging time \rightarrow Increase the number of TESs \rightarrow Multiplex readout
- Multiplexing method
 - 1. Time Division Multiplexing (TDM)
 - 2. Code Division Multiplexing (CDM)
 - Slow Switching (160ns) -
 - 3. Frequency Division Multiplexing (FDM)
 - Low modulation frequency (5 MHz) <--
 - 4. Microwave SQUID Multiplexer (MW-Mux)
- MW-Mux has a FDM carrier wave of gigahertz. \checkmark It can increase the bandwidth

- ✓ We successfully measured a pulse from an optical TES and resolve number of photons.
 - Responses of the TES to photons

Principle of MW-Mux.

Setup

Cryogenic module (100mK) \checkmark

Optical TES

- Ti/Au (20/10 nm) bilayer TES
- Tc = 0.3 K
- Self-aligning fiber-to-detector coupling

- (a) Output signal from optical TES. Pulses were measured according to repetition frequency of pulse laser.
- (b) Average pulse.

Rise time constant: 100 ns. Fall time constant: 156 ns.

- **Energy Resolution**
 - Experiment: 0.42 eV
 - Calculation: 0.35 eV

$$= \sqrt{\Delta E_I^2 + \Delta E_R^2 + \Delta E_s^2}$$
$$= \sqrt{0.27^2 + 0.07^2 + 0.21^2}$$

- Experimental data Fitting result Number of events Energy [eV]
- ΔE_I : Intrinsic energy resolution ΔE_R : Readout noise = 10 pA/VHz ΔE_{S} : Coarse sampling effect
- What's the coarse sampling effect
- Energy spectrum from a pulsed laser at 1550 nm

- Pulse laser \checkmark
 - Repetition frequency: 10 kHz
 - Energy: 0.8 eV / photon (wavelength: 1550 nm)

- Sampling time >> Rise/Fall time constant
 - \rightarrow sparse sampling
- the pulse height cannot be sampled accurately.

