Particle response of antenna-coupled TES arrays

Ben Osherson, University of Illinois at Urbana-Champaign

R.V. Gramillano, J. Fu, R. Gualtieri, J.P. Filippini, the JPL detector team and the SPIDER collaboration July 23, 2019

photo cred: Sam Burrell

Detectors in space

Planck glitch experience

Planck HFI saw frequent ($\sim 1/s/det$) 'glitches' in data. The Planck team conclusioned:

- Glitches were caused by particle interactions with some of the surrounding assembly, not just the bolometer.
- O Some glitches have long recovery times (\sim 1s).

Cleaning data required careful template fitting and subtraction and some excision.

Sample

A. Catalano et al. 2014

TES arrays in space

Future space missions (PICO, Lite-BIRD, SPICA, OST and more) will feature **larger and more densely populated** detector arrays.

- O These arrays will have a higher rate of interactions and those interactions may couple to many near-by detectors on the wafer.
- **Multiplexing** may cross-talk glitches across channels.

SPIDER Antarctic Long Duration Balloon (LDB) mission

Modern arrays:

Three telescopes observing at 90GHz and three telescopes observing at 150GHz, totaling more than 2400 TESs.

Multiplexed:

NIST SQUID readout chain and multiplexed by time-division Multi Channel Electronics (MCE) from UBC.

Space-like environment:

16 days floating at ~40km.

SPIDER TES arrays by JPL

Dense wafers, interleaved phased antenna arrays and TES islands

Each grid-square has two interleaved phased antenna array sets of orthogonal polarizations.

Detector NEP 2-4 x 10⁻¹⁷W/rtHz

Photoshop mosaic

Flight expectations

	dimensions	rate	deposition
TES island	$300 \mu m imes 150 \mu m imes 1 \mu m$	$\sim 1/10$ min	250 eV
Wafer	70 mm $ imes$ 70 mm $ imes$ 0.5 mm	$\sim 250/s$	50 keV

Lab setup

Constructed and run at UIUC

Custom FPU built from all flight systems:

- A recovered SPIDER flight TES wafer
- Recovered SPIDER flight SQUIDs
- O A recovered SPIDER flight telescope base
 - O incl. the sub-kelvin fridge
- O Flight-like multiplexer

Lab set-up: 5*MeV* α s from ²⁴¹*Am*

- O Two sources are placed directly over TES islands, we expect a few α interactions per min, depositing 100 keV to 1 MeV into each islands.
- O Two sources are placed over antenna patches, each providing hundreds of $\alpha s/s$ interactions depositing 5*MeV* into the wafer.

Lab set-up: 5*MeV* α s from ²⁴¹*Am*

- O Two sources are placed directly over TES islands, we expect a few α interactions per min, depositing 100 keV to 1 MeV into each islands.
- O Two sources are placed over antenna patches, each providing hundreds of $\alpha s/s$ interactions depositing 5*MeV* into the wafer.

Lab agrees with flight:

O Detector sensitivity is localized to near the TES island.

Lab coincidences

For a glitch on **Primary**, what is the probability of a glitch on cross-talkers? AB partner | 9.8% next mux row | 8.8% Expected Poisson coincidence < 0.5% in AB pair.

Some cross-talk mechanisms evident:

- O AB pair correlated:
 - \Rightarrow Could be either wafer propagation or cross talk.
- O Next mux row correlated:
 - O Adj. mux row cross-talk visible in lab, not in flight. Possibly because of lab's high energy depositions.

Some cross-talk mechanisms evident:

- O AB pair correlated:
 - \Rightarrow Could be either wafer propagation or cross-talk.
- O Next mux row correlated:
 - O Adj. mux row cross-talk visible in lab, not in flight. Possibly because of lab's high energy depositions.

Lab glitch shapes at 15.2kHz

- O Some glitches saturate (expected!) at this TES bias.
- O Diverse rising and falling time constants (notice trace crossings!).
 - O Diverse falling time constant could come from where the energy is deposited in the island or along the legs (modeling work by JPF).
 - O Very fast rise and fall times only occur in low energy glitches.

Flux slips

Step properties

- O There are flux slips on the rising edges of very big glitches. Causing the readout system to recover one SQUID flux period away from where it should.
 - O At SPIDER 1's sampling rate, these shapes have no information about the underlying glitch.
- O In SPIDER these happen about 1/hour/det.

Take-aways and looking forward

- O The detectors are **not sensitive to large areas** of the wafer, sparing them of a significant analysis glitch impact.
 - O The detectors are **probably sensitive to depositions on the legs**, increasing the area of sensitivity and causing 'rounded' glitch shapes.
- Multiplexing is responsible for some cross-talk, but we now know
 SQUID periodicity is responsible for converting big glitches into flux-slips.
- O Repeating the tests at 100 mK.
- O Further modeling work:
 - O flux-slip mitigation.
 - O particle-leg interactions.
 - O energy calibrating non-linear / non-ideal glitches.

This work is supported by NASA Strategic Astrophysics Technology (SAT) program, and the SPIDER collaboration.

Adding multiplexing to readout

Showing time division with SQUID amplifier chain

Need to include:

- O Fractional transfer of energy from legs.
- O Glitch \rightarrow step cut-off.
- O Energy calibration for non-linear/non-ideal glitches.

Flight Spectrum 1/6

Flight Spectrum 2/6

Flight Spectrum 3/6

Flight Spectrum 4/6

Flight Spectrum 5/6

Flight Spectrum 6/6

Effects of bias on flux slips

Flux slips can be prevented in tuning or TES design

More details on SPIDER flight coincidences

FPU	$N_{events}^{dets>1}/N_{events}$	$N_{events}^{dets \leq 2}/N_{events}^{dets > 1}$
X1	7.7%	87.4%
X2	3.7%	91.3%
X3	4.0%	89.0%
X4	2.5%	93.7%
X5	9.0%	83.0%
X6	4.9%	90.5%

More details on SPIDER flight coincidences

SPIDER 150GHz simulation parameters

$$\begin{array}{ll} I_c & 2A \\ T_c & 500mK \\ \alpha_0 & 125 \\ R_n & 32m\Omega \\ C & 1pJ/K \text{ at } 450mK \\ G & 20pW/K \text{ at } 450mK \\ \beta_c & 2.8 \\ \beta_G & 2.1 \\ L & 2.4mH \\ R_{sh} & 3m\Omega \\ R_b & 1096\Omega \\ P_{opt} & 0.3pW \end{array}$$