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Detectors in space

Planck glitch experience

Planck HFI saw frequent (~ 1/s/det)
‘glitches’ in data. The Planck team
conclusioned:

O Glitches were caused by particle
interactions with some of the
surrounding assembly, not just
the bolometer.

O Some glitches have long
recovery times (~ 1s).

Cleaning data required careful tem-
plate fitting and subtraction and
some excision.
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TES arrays in space

Future space missions (PICO, Lite-
BIRD, SPICA, OST and more) will
feature larger and more densely
populated detector arrays.

O These arrays will have a higher
rate of interactions and those
interactions may couple to
many near-by detectors on
the wafer.

O Multiplexing may cross-talk
glitches across channels.




SPIDER Antarctic Long Duration Balloon LB mission

Modern arrays:
Three telescopes observing at 90GHz and three
telescopes observing at 150GHz, totaling more
than 2400 TESs.

Multiplexed:

NIST SQUID readout chain and multiplexed by
time-division Multi Channel Electronics (MCE)
from UBC.

Space-like environment:

16 days floating at ~40km.
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SPIDER TES arrays by JPL

Dense wafers, interleaved phased antenna arrays and TES islands

Each grid-square has
two interleaved phased
antenna array sets of
orthogonal polarizations.

Detector NEP 2-4 x 1017 WirtHz

Photoshop mosaic




Flight expectations

Cosmic ray protons (Lotti+ 2012) Protons on Si (PSTAR + extrapolation)
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TES island | 300um x 150um x 1um | ~ 1/10min | 250 eV
Wafer 70mm x 70mm x 0.5mm | ~ 250/s 50 keV




Flight results
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O Glitch rate: ~ 1/3min/det.
SPIDER flight cosmic ray spectrum for X3 O Each g“tCh lasts < 0.1s.
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Lab setup

Constructed and run at UIUC

Custom FPU built from all
flight systems:
O A recovered SPIDER
flight TES wafer

O Recovered SPIDER flight
SQUIDs
O A recovered SPIDER
flight telescope base
O incl. the sub-kelvin
fridge

O Flight-like multiplexer




Lab set-up: 5MeV as from %*1Am

Detector|
T Tile

O Two sources are placed directly over TES islands, we expect a few «
interactions per min, depositing 100keV to 1MeV into each islands.

O Two sources are placed over antenna patches, each providing hundreds of
as/s interactions depositing 5MeV into the wafer.



Lab set-up: 5MeV as from %*1Am

Geantd I1sland sims
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O Two sources are placed directly over TES islands, we expect a few «
interactions per min, depositing 100keV to 1MeV into each islands.

O Two sources are placed over antenna patches, each providing hundreds of
as/s interactions depositing 5MeV into the wafer.



La b rates Measured rate of Egep > 100eV Hz
°@®
O
°@®
@]

Lab agrees with flight:

O Detector sensitivity is localized to near the TES island.
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Lab coincidences Measured rate of Egep > 100eV Hz
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Some cross-talk mechanisms evident:
O AB pair correlated:
= Could be either wafer propagation or cross talk.
O Next mux row correlated:

O Adj. mux row cross-talk visible in lab, not in flight. Possibly because of
lab's high energy depositions.



Lab coincidences Measured rate of Egep > 100eV Hz
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Some cross-talk mechanisms evident:
O AB pair correlated:
= Could be either wafer propagation or cross-talk.
O Next mux row correlated:

O Adj. mux row cross-talk visible in lab, not in flight. Possibly because of
lab's high energy depositions.



Lab glitch shapes at 15.2kHz

det:r12c07, bias:3000ADU, rate:15.15kHz
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O Some glitches saturate (expected!) at this TES bias.
O Diverse rising and falling time constants (notice trace crossings!).
O Diverse falling time constant could come from where the energy is
deposited in the island or along the legs (modeling work by JPF).
O Very fast rise and fall times only occur in low energy glitches.



Flux slips

Step properties
O There are flux slips on

15kHz 24'Am lab data H_‘e ”f_'”ghedgeé of very
sloped steps (glitch 180) Ig glitches. Causing
nan eV measured the readout system to
detector r12c07 recover one SQUID flux
bias 2700 (R = 0.45Ry) .
R A period away from where

it should.

O At SPIDER 1's
sampling rate, these
shapes have no
information about the
underlying glitch.

O In SPIDER these happen
about 1/hour/det.
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Take-aways and looking forward

i 1 Rl I [ 1l
O The detectors are not sensitive to large areas of the wafer, sparing
them of a significant analysis glitch impact.
O The detectors are probably sensitive to depositions on the legs,
increasing the area of sensitivity and causing ‘rounded’ glitch shapes.
O Multiplexing is responsible for some cross-talk, but we now know
SQUID periodicity is responsible for converting big glitches into

flux-slips.

O Repeating the tests at 100mK.
O Further modeling work:
O flux-slip mitigation.
O particle-leg interactions.
O energy calibrating non-linear / non-ideal glitches.
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Adding multiplexing to readout

Showing time division with SQUID amplifier chain
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Geant4 island sims Geant4 vs Under-the-source islands
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Need to include:
O Fractional transfer of energy from legs.
O Glitch — step cut-off.

O Energy calibration for non-linear/non-ideal glitches.



Flight Spectrum 1/6

SPIDER flight cosmic ray spectrum for X1

103
—_ Tile 1
102 4 — Tile 2
— —— Tile 3
T 10 — Tile 4
E 1 —— Planck long
%J 100 - == Planck short
X
£ 1074
S 10724
c
3 10
8, 1077 4
w
% g 10—4 4
10—5 o
_6 :
100eVv lkeV

EleV](est.)



Flight Spectrum 2/6
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Flight Spectrum 3/6

SPIDER flight cosmic ray spectrum for X3
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Flight Spectrum 4/6

SPIDER flight cosmic ray spectrum for X4
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Flight Spectrum 5/6

SPIDER flight cosmic ray spectrum for X5

103
— Tile 1
102 4 — Tile 2
- —— Tile 3
T 10 — Tile 4
3 ol —— Planck long
%J 100 4 I Planck short
X
ES 10-14
S 10724
c
3 10
8, 1077 4
w
-4 |
% g 10
10—5 o
-6 T T
100eVv lkeV 10keV 50keV

EleV](est.)



Flight Spectrum 6/6
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In simulation 1/3

SQUID stages

b

Flux slips explained:
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Flux slips explained: In simulation 2/3

SQUID stages
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Flux slips explained:

Flux in ®g

Flux in ®g

In simulation 3/3
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Effects of bias on flux slips

Flux slips can be prevented in tuning or TES design

Simulation: TES responds to instanta
TES biased at R = 0.5Ry

neous Egep

Simulation: TES responds to instantaneous Egep

After MCE readout, filtering and decimation
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More details on SPIDER flight coincidences

dets>1 dets<2 dets>1
FPU Nevents /Nevents Nevents /Nevents

X1 7.7% 87.4%
X2 3.7% 91.3%
X3 4.0% 89.0%
X4 2.5% 93.7%
X5 9.0% 83.0%

X6 4.9% 90.5%



More details on SPIDER flight coincidences
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SPIDER 150GHz simulation parameters
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