

TES-based X-ray spectroscopy of kaonic atoms

Tadashi Hashimoto (JAEA, Japan) for J-PARC E62/HEATES collaboration

July 26th, 2019

HEATES collaboration (J-PARC E62)

- High-resolution Exotic Atom x-ray spectroscopy with TES -

Nuclear physicists + TES experts + Astro-physicists

71 collaborators in total

Science goal: Hadron physics with K-

Hadron physics

- Hadron = meson(qq^{bar}) and baryon(qqq)
- How are hadrons formed from quarks and gluons?
- How are hadrons form nuclei?

K-(anti-Kaon) could be a good probe

- lightest particle with a strange quark
- K^{bar}N is strongly attractive in I=0
- Nuclear state of a K⁻ and two protons could exit as a new form of matter
- K⁻ might play an important role in neutron stars
- Need more precise data for basic interactions

X-ray spectroscopy of Kaonic atom

	K⁻ ³He	K⁻ ⁴He	
X-ray energy	6.22 keV	6.46 keV	
Shift	< 1 eV (e	(expected)	
Width	2~5 eV (expected)		

- Replace e⁻ with K⁻
 →Kaonic atom
- K⁻ wave function overlaps with a nucleus at tightly-bound states
- Perturbation by the strong interaction
- Unique probe for K-nucleus strong interaction

$$e^{-}$$
 mass : m_{e} = 0.511 MeV/ c^{2}
 K^{-} mass : $m_{K^{-}}$ = 493.7 MeV/ c^{2}

x1000 mass→x1000 X-ray energy

NIST TES for kaonic atom experiment

- Mo/Cu + Bi 4um
 (85% eff.@6 keV)
- 240 pixels, 23 mm²
- 30 x 8 TDM readout
- HPD102 cryostat

Integrate with a cryogenic target system

- In a charged-particle rich environment
- □ Low science X-ray rate (~200/week=~1/hour)

] Absolute energy calibration to 0.1 eV precision

HEATES project

2	013	Start collaboration with NIST LTD15: S. Okada	
2	014	Demonstration experiment @ PSI, Switzerland (pionic atom) H. Tatsuno et al., Jour. Low Temp. Phys., 184(3), 930-937, 2016.	
2	015	LTD16: H. Tatsuno	
2	016	Commissioning with K ⁻ beam @ J-PARC, Japan T. Hashimoto et al., IEEE Trans. Appl. Supercond. 27(4), 1-5, 201	
2	017	LTD17: T. Hashimoto	
2	018	Physics data taking for K ⁻ atom @ J-PARC	
2	019	Poster#61 S. Yamada LTD18: This talk Poster#203 H. Tatsuno Poster#243 R. Hayakawa	

J-PARC: Japan Proton Accelerator Research Complex

J-PARC provides high-intensity proton beam MR: 30 GeV, ~55Tppp, 1.6 km ring (cf. 7 TeV, 27km@LHC)

J-PARC: Japan Proton Accelerator Research Complex

Liq. ^{3/4}He

system

X-ray tube

lead shields

Cu degrader

K-beam

TES cryostat

0

0

0

0

He target Cryostat

 \bigcirc

calib

x-rays

SDD

X-ray generator

Liq. ³He or ⁴He target cell

K-He

x-rays

TES & He target cell

Target region with shield, MLI, SDDs

Long-term operation of cryogenic systems

In-beam energy calibration

H. Tatsuno et al., Jour. Low Temp. Phys., 184(3), 930-937, 2016.

16

Effect of charged particle hits

Charged particle identification

- No difference in the primary pulses between X-rays and charged particles
- If we look at neighboring pixels, we can reject half of the charged particles

Poster#203 H. Tatsuno

Shorter record length to avoid pileup

✓ Thermal cross talk bumps deteriorate resolution

✓ Minimize chance to have pileup bumps

Combine with beam-line information

- ✓ Every kaon beam timings are implemented into the TES data stream in the row time unit. (trow=240 ns)
- Full information of the beam line detectors (~1000 readout channels) for each kaon beam is available by offline synchronization based on the timestamp.

Kaonic Helium-3/4 X-ray spectrum

We will carefully extract the peak positions and widths

22

- TES-based X-ray spectrometer was applied to Kaonic atom experiment at J-PARC, Japan.
 - Contribute to determine the K^{bar}-nucl. potential depth.
- Successfully obtained nice spectra by using various analysis techniques
 - In-beam energy calibration
 - · Charged particle ID with neighboring pixels: "group trigger"
 - Shorter record length
 - Combine with beam line detector data: "external trigger"
- Next: Kaonic atom at DAΦNE in Frascati