

Exploring coherent neutrino-nucleus scattering with cryogenic detectors

Max-Planck-Institute for Physics, Munich 18th International Workshop on Low Temperature Detectors 22-26 July 2019 - Milano, Italia

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

The Magnificent CEvNS

CEvNS at a nuclear reactor

Reactor Neutrinos: Promises

Large Flux

 \rightarrow High statistics possible with small detector

Low energies > 8 MeV

→ Full coherence, New Physics potential

Challenges

Recoil energies below 100 eV \rightarrow ultra-low thresholds required

Shallow depth, continuous source \rightarrow challenging background environment

3

CEvNS at a nuclear reactor

Reactor Neutrinos: Promises

Large Flux

 \rightarrow High statistics possible with small detector

Low energies > 8 MeV

→ Full coherence, New Physics potential

Challenges

Recoil energies below 100 eV \rightarrow ultra-low thresholds required

Shallow depth, continuous source \rightarrow challenging background environment

4

P.I. R. Strauss

The NUCLEUS collaboration

nu cleus experiment

so far 5 institutes with ~40 members

+ INFN funding under review

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

WIEN HEPHY INSTITUT FÜR HOCHENERGIEPHYSIK

τIJ

The NUCLEUS concept

The first NUCLEUS prototype (2017)

Energy threshold: E_{th} = (19.7 +- 0.9) eV Lowest threshold for nuclear recoils in the field Accurate knowledge of the energy scale

Scaled-down dark matter detector (CRESST technology): 0.5 g Al₂O₃

TES (evaporated W), T_c= 15 mK Al phonon collectors Au thermal link

Resistive heater for temperature stabilization and pulser linearization

The NUCLEUS cryogenic detector

→ Fiducial-volume cryogenic detector

NUCLEUS 1g demonstrator

First version of cryogenic detector components to study co-operation and performance

Inner veto and holder

Outer veto assembly

fiducial volume

Supported by Excellence Cluster "Universe" 2017, 2018

Target detector(s)

NUCLEUS target detectors

Fabrication

- Film deposition for multiple TES
- Transition testing
- Dicing / Polishing
 - → Improved homogeneity of transitions, better reproducibility
 - → Important technique for future mass-production

Target Materials

- Multi-material target (Debye temperature, CEvNS cross-section ~N², neutron cross-sections)
- currently under investigation: Al_2O_3 , $CaWO_4$, Si, Ge

Straightforward production + requires multiplexed readout

NUCLEUS target detectors

Scaling down TES phonon collection area together with absorber size → comparable non-thermal phonon lifetime

Smaller W area (heat-capacity) → reduce thermal coupling (Au link) for same relaxation time

NUCLEUS target detectors

Scaling down TES phonon collection area together with absorber size → comparable non-thermal phonon lifetime

Smaller W area (heat-capacity) → reduce thermal coupling (Au link) for same relaxation time

The cryogenic inner veto

Si wafers $(11mm)^2 \times 200 \mu m$

1) 4π surface veto (sub-keV threshold)

2) Elastic instrumented holder

- wet-etched pyramid structures
- point-like contacts to target

1g demonstrator

Inner Veto Performance

03/2019: First simultaneous detector operation

~5-20% phonon transmission between detectors

Energy resolutions: 13.4 eV (veto top), 9.1 eV (veto bottom)

 \rightarrow trigger thresholds below 100 eV

3 bands corresponding to direct energy depositions Populations between bands can be discriminated:

- Surface contaminations •
- Holder-induced events (stress) ٠

The cryogenic outer veto

Requirements: massive (O(kg)), high-Z, fast \rightarrow n/gamma anti-coincidence

First prototype:

5cm x 5cm Si cylinders (~210g) large-area (6x8 mm²) TES → fast pulses Cavity for inner detectors

Next steps:

- Characterization at shallow underground lab of TUM (UGL)
- Joint test of all cryo components
- Materials: Ge, Li, WO, (BASKET)

Performance in unshielded surface setup

The Very-Near Site at Chooz

cea

Very Near Site

New experimental site in a $24m^2$ room in an administrative building Between the two reactor cores Expected v-flux: 10^{12} (s cm²)⁻¹ First muon and fast neutron measurements completed

 Image: Market in the Very-Near-Site

2020 Cryostat delivered to Munich NUCLEUS 10g cryodetectors commissioned in Munich

2021 "Blank assembly" of all subsystems in TUM underground lab setup relocation to Chooz + commissioning

NUCLEUS-10g data taking

2022

developing **tiny** detectors to study **tiny** nuclear recoils with **great** physics reach

NUCLEUS – it's tiny, but it's great!