18th International Workshop on Low Temperature Detectors

Searches for low mass dark matter with the **CRESST-III** experiment

Michele Mancuso on behalf of the CRESST Collaboration 22 July 2019

Laboratori Nazionali del Gran Sasso

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

The CRESST collaboration

Cryogenic Rare Event Search with Superconducting Thermometers

The CRESST experiment

Cryogenic Rare Event Search with Superconducting Thermometers

CRESST located at LNGS (Laboratori Nazionali del

Gran Sasso) in Italy

~3600 m.w.e. deep μ : 3x10⁻⁸/(s cm²) γ : 0.73/(s cm²) neutrons: 4x10⁻⁶/(s cm²)

Shielding:

- polyethylene
- muon veto system
- lead
- copper
- polyethylene

The CRESST detector

Target crystal

Heater

Scintillating 20x20x10 mm³ ~24 g CaWO₄ crystals as target

- •Cryogenic detector $T_0 \approx$ 10mK
- •W-TES sensor for T read-out 2.4x0.85 mm^2 and 200 μm thick

• CRESST is not bound to one target material

Poster id: P59 L. Canonica Diamond cryogenic detector for low-mass Dark Matter searches P258 E. Bertoldo Lithium-containing crystals for light dark matter search experiments

Poster id: P214 A. Abdelhameed

(Werner-Heisenberg-Institut

The CRESST detector

TES read-out control

The CRESST detector

Scintillating Calorimeter Detector

6

+

0.65 0.7 Time [s]

The CRESST detector

The CRESST-III detector module

Energy resolution

Scintillating 24 g CaWO₄ crystals as target

Cryogenic detector T₀≈10mK
W-TES sensor for T read-out
E_{threshold} ≤ 100 eV (nuclear recoils)

Background rejection

Veto surface related background

Housing

•Reflecting & scintillating foil •Fully scintillating

Instrumented holding system

•CaWO₄ stick instrumented with W-TES

Particle discrimination

Light detector SOS

•Cryogenic detector T_0 ≈10mK •W-TES sensor for T read-out

Light yield characteristic of the type of particle \rightarrow Particle discrimination

The CRESST-III experiment

<u>CRESST-III</u> Phase 1 Run commissioning

10 X CRESST-III detector module

May 2016 > 10 detector modules mounted

June 2016 > Cool down to mK temperature

Sept 2016 ≻ Start physics run

Oct 2016 > Gamma calibration (energy calibration)

April 2017 ≻ Neutron calibration (Light Yield calibration)

Feb 2018 > End of run

Today

Total raw exposure collected as of 02.2018 : ~30 kg · day
 Results from 1 detector module: 5.689 kg · day

CRESST collaboration submitted to PRD arXiv:1904.00498v1

ResultsData acquisition and processing

- Data acquisition (DAQ) is a dead-time free transient digitizer, the detector output is continuously recorded with a sampling rate of 25 kHz
- Optimum filter of the entire data stream for triggering and energy reconstruction (maximization of the signal-to-noise ratio)
- In-depth study of energy calibration at low energy (< 1keV)

- Rigorous threshold analysis: threshold determined by accepted noise trigger rate
- Detectors outperformed the design goal of 100 eV threshold

<u>Results</u>

Physics data Detector A – energy calibration & efficiency

- Data taking period: 11/2016 to 02/2018
- Detector mass: 23.6 g
- Total exposure: 5.689 kg day
- Analysis Threshold: 30.1 eV

Simulated spectrum injected on real data

Light gray: trigger efficiency Dark gray: after selection criteria

Results

Physics data Detector A – Neutrons calibration

•The neutron source is used to calibrate light yields

$LY=E_L/E_{Ph}$

 ${}^{\bullet}\text{E}_{\text{L}}$ is the energy estimator of the light detector response

 $\bullet E_{Ph}$ is the energy estimator of the phonon channel which is considered to be the total deposited energy of an interaction.

Max-Planck-Institut für Physik

Results

Physics data Detector A - ROI

Results Physics data Detector A

Results Dark matter result

Yellin 1D optimum interval method

Replicated and improved result from CRESST-II

Extend reach from 0.5 GeV/c² to 0.16 GeV/c²

One order of magnitude improvement at 0.5 GeV/c²

Background rising towards low energies limits the sensitivity at low DM masses

CRESST-III Phase 1 RUN2 in data taking

➢ Upgraded detector modules with dedicated hardware changes to understand low energy spectrum

<u>Results</u>

Dark matter result – spin-dependent

The **spin-dependent** exclusion limit with natural isotope ¹⁷O which is sensitive to spin-dependent neutron-only interactions

Total exposure 0.46 g days

R&D ongoing on new target materials sensitive to spin dependent.

Detecting dark matter is one of the ultimate challenges in fundamental physics.

> Cryogenic detector are suited for precise measurement for low energy nuclear recoils

CRESST has an outstanding potential to explore the low mass region of the parameter space for DM nucleus scattering with unprecedented sensitivity

CRESST-III Phase 1 RUN1 07/2016 - 02/2018

- > 40% of the detector modules with a threshold below 100 eV
- Leading sensitivity below 1.6 GeV/c² DM mass for spin-independent and spin-dependent interaction
- Background limited
- Similar background observed on all detector with E_{th} below 100eV

CRESST-III Phase 1 RUN2 11/2018

mainly devoted to hardware-tests with upgraded detector modules to study the origins of low energy events