

The CUORE detector and results

A DEGLI STUDI DI MILANO BICOCCA

Irene Nutini Università degli Studi Milano Bicocca INFN Milano Bicocca

18th International Workshop on Low Temperature Detectors (LTD-18) July 25th, 2019

Double beta decay

CUORE

Cryogenic Underground Observatory for Rare Events

Cryogenic experiment using (nat)TeO2 detectors

- ¹³⁰Te within the detector absorber of TeO₂ ($\epsilon \sim 90\%$)
- Detector active mass 742 kg TeO₂ (~206 kg of 130Te)
- TeO₂ operated as low temperature macro-calorimters (~10 mK): good energy resolution Δ (~0.2% FWHM/E) , compared to other ββ experiments
- **η(**¹³⁰Te) = **34.167%**, Q_{ββ} (¹³⁰Te) = 2527.518 keV

Experimental 0vßß half-life sensitivity

 $M \cdot T$

Finite background

Zero background

 $S_{0\nu} \propto \eta \cdot \epsilon \ M \cdot T$

 $S_{0\nu} \propto \eta Q$

 $(B \cdot \Delta \ll 1)$

Detector performance

- extremely low background
- excellent energy resolution
- **Detection technology**
- Good detection efficiency:
 ββ source embedded into the absorber
- Isotope choice
- High isotopic natural abundance or enrichment
- Exposure
- Large active mass (M) detector
- Long live-time

Artusa D.R. et al. (CUORE Collaboration), Adv. High Energy Phys. 2015,879871,(2015) http://doi.org/10.1155/2015/879871

The CUORE detector

From few g to 1 tonne TeO₂ calorimeters for double beta decay search

The CUORE detector

CUORE detector Array of closely packed 988 TeO₂ crystals arranged in 19 towers High Mass of TeO₂: 742 kg (206 kg of ¹³⁰Te) and high granularity

CUORE tower: 52 crystals arranged in 13 floors of 4 crystals each

CUORE-0 experiment: CUORE-tower demonstrator

CUORE array: 19 towers

The CUORE challenge

* Low background

- Deep underground location (LNGS)
- Strict radio-purity controls on materials and assembly
- Passive shields (Pb) from external and cryostat radioactivity
- Detector: high granularity and self-shielding

Background goal: 10⁻² c/(keV · kg · yr)

in the Region Of Interest (ROI) around $Q_{\beta\beta}$

* Low temperature and low vibrations

TeO₂ detectors to be operated as calorimeters at temperature ~10 mK: Multistage cryogen-free cryostat

Nominal energy resolution: 5 keV FWHM

in the Region Of Interest (ROI) around $Q_{\beta\beta}$

Dell'Oro S. et al., Cryogenics 102, 9, (2019) https://doi.org/10.1016/j.cryogenics.2019.06.011

CUORE data taking

- 2017 First CUORE cool-down (early 2017)
 - CUORE detector initial characterization \longrightarrow Set T = 15 mK
 - First CUORE Physics data taking @ 15 mK
 - Optimization and test new temperature T = 11 mK (late 2017)
- 2018 Warm-up and maintenance of gate valves for the calibration system (early 2018)
 - Physics data taking @ 11 mK
 - Warm-up and resolution of a leak using the second condensing line (late 2018)
- 2019 Warm-up and maintenance of the cryogenic system (early 2019)
 - Physics data taking @ 11 mK (ongoing since March 2019)

CUORE optimization

The CUORE experiment started taking data in 2017.

- First time such a large number of macro-calorimeters (~ 1000) simultaneously operated in a completely new and unique cryogenic system
- Detector and overall system different compared to previous smaller scale bolometer experiments

Dedicated detector characterization and optimization campaigns performed in order to characterize and improve the detectors and overall system performance.

Goal: Improve the energy resolution and reach stable data-taking conditions

- Characterization and tuning of detector operating parameters
- Noise reduction

I.Nutini, LTD-18 conference - July 25th, 2019

CUORE instrumented detectors

TeO₂ crystals coupled with NTDs

- Macro-calorimeters
- Same detector response for different particles (phonons only)
- Slowness if coupled with NTDs (suitable) only for low rate experiments, as rare event searches - $0\nu\beta\beta$)

(nat)TeO₂ crystal

Absorber = $0\nu\beta\beta$ source $5.0 \times 5.0 \times 5.0 \text{ cm}^3$ 750 g mass C(T) ~ 2.3 x 10⁻⁹ J/K (@ 10 mK) $\Delta T_{crystal} \sim 100 \,\mu K/MeV$ τ~0.1-1s

Ge-NTD

Working impedance of the thermistors:

Si-heater

 $\Delta V_{\text{NTD}} \sim 400 \,\mu\text{V/MeV}$ (@10 mK)

Si heater

2.3 x 2.4 x 0.5 mm³ Joule heater designed to periodically provide a fixed amount of energy in the crystal

Au-wire bonding to Cu-PEN read-out strips

PTFE holders

TeO₂ absorber

Alduino C. et al. (CUORE collaboration), J. Inst. 11(07), P07009, (2016) https://doi.org/10.1088/1748-0221/11/07/p07009

CUORE detectors characterization

Detector response

RC coupling between the NTD resistance and the parasitic capacitance of the electrical links acts as a low pass filter limiting the signal bandwidth: ~(0 - 10) Hz

Thermistor NTD-Ge

NTDs belonging to different (neutron implantation) batches installed on the CUORE towers: NTD 41C, NTD 39C, NTD 39D - The three NTD-types have slightly different characteristic parameters of their R(T) curves

Load Curves analysis and NTDs Working Points selection

Dedicated procedures and algorithms in $V_{Bol}(mV)$ 350^{MNS} RMS (mV CUORE to automate the NTDs load curve Amplitue ____0.8 12 measurement and the working point 0.13 300 0.12 Julse 10 identification at each T_{base} for every detector -0.7 250 0.11 AP with pulser amplitude at 2200 -0.6 0.1 200 AP with pulser amplitude at 1800 Amplitude ____0.09 AP with pulser amplitude at 1200 0.5 150 AP with pulser amplitude at 500 0.08 **CUORE Preliminary** Reference pulses 2 0,6 0.07 -0.4 **⊣100** for different amplitudes 10 20 30 40 50 60 70 80 @ VBIAS_WP $I_{B}(pA)$ Vbol — PAmp 0.2 RMS - SNR 1000 2000 3000 4000 5000 V_{Bias} (mV) Poster I.Nutini Time (s) **CUORE** preliminary **Temperature Scans CUORE** preliminary ≥ ∎1200 T 11 mK TIIMK 15 mK T 17 mK 15 mt

Identify the best operating temperature (T_{base}) for the CUORE detector array

Noise contribution on the CUORE detectors

- Intrinsic Noise sources
 - Thermodynamic noise: thermodynamic energy fluctuation between the absorber and the heat bath ~(20-100) eV
 - Johnson Noise on load resistor RL: FWHMJohnson ~ 0.8-0.9 keV
- Extrinsic Noise sources
 - Preamplifier noise: boards designed to minimize at negligible level the corresponding noise contribution
 - Vibrational noise: dominant noise contribution vibrations of the cryogenic apparatus /transmitted to the crystals.

Pulse Tubes induced vibrations: Pulse Tube active noise cancellation

CUORE raw data processing

First results from CUORE

CUORE Physics data 2017

CUORE vs CUORE-0

- In 7 weeks of data taking (2017) CUORE collected more than twice the CUORE-0 total **exposure** (CUORE-0 - single CUORE-¹ like tower - run for almost 2 years)
- Background reduction in the γ region by a factor ~ 6
- Alpha background consistent with CUORE-0; unexpected excess of ²¹⁰Po surface events (5.3 MeV), accounts for < 10⁻⁴ cts/kev/kg/yr around Q_{ββ}

(After analysis selections)

First results from CUORE

CUORE

CUORE Physics data 2017

Reconstructed energy resolution at $Q_{\beta\beta}$: (7.7 ± 0.5) keV FWHM ROI background index (B) ~ 1.4 × 10⁻² c/(keV·kg·yr)

 $0\nu\beta\beta$ analysis ∃(Mo ()Se Cuoricino + CUORE-0 + CUORE limit (Te), PRL 120, 132501 (2018) 10 Half-life limit for $0\nu\beta\beta$ in ¹³⁰Te (90%C.L including syst.) **CUORE** sensitivity (Te) Inverted hierarchy $T_{0v}^{1/2}$ (¹³⁰Te) > 1.3 x 10²⁵ yr (meV) Combined data: CUORE + CUORE-0 + Cuoricino Normal hierarchy $T_{0v}^{1/2}$ (¹³⁰Te) > 1.5 × 10²⁵ yr $m_{BB} < 110 - 520 \text{ meV}$ Other isotope. 10-10² 10 m_{lightest} (meV) Alduino C. et al. (CUORE collaboration), Phys. Rev. Lett. 120

Background model & ¹³⁰Te 2νββ half-life ^Ω Alduino C. et al. (CUORE collaboration), Phys. Rev. Lett. 120, 132501, (2018), https://doi.org/10.1103/PhysRevLett.120.132501

Monte Carlo reconstruction of the CUORE background

Profit of a segmented detector:

- events multiplicity
- background sources location
- inner towers self-shielded from outer contaminants
 T_{2v}^{1/2} (¹³⁰Te) =

[7.9 ± 0.1 (stat) ± 0.2 (syst)] x 10²⁰ yr

Adams, D. Q. et al. (CUORE Collaboration),"Update on the recent progress of the CUORE experiment" arXiv:1808.10342, (2018)

Conclusions

CUORE is the first tonne-scale operating macro-calorimetric 0vßß detector.

- First CUORE physics results of T_{0v} and T_{2v} in ¹³⁰Te with the physics data collected in 2017
- A total exposure of more than 400 kg yr is already available, updated physics results will be released at TAUP-2019
- The CUORE data taking is currently underway to collect 5 years of live time
- Studying and testing new strategies to improve the detector resolution
- Investigating the potential of the CUORE experiment for the search for rare events and/or for physics beyond the Standard Model other than the $2\nu\beta\beta$ decay of ^{130}Te
- Important feedback from CUORE operations for the future CUPID project (CUORE Upgrade with Particle IDentification)

B CUORE

Thank you on behalf of The CUORE collaboration

CUORE contributions at LTD-18

Talks:

- V.Singh, "The CUORE cryostat: the first sub-10 mK 1-ton scale infrastructure for low temperature detectors"
- I.Nutini, "The CUORE detector and results"

Posters:

- A.Campani, "Lowering the energy thresholds for the CUORE Experiment: a comparison between Optimum Trigger and Derivative Trigger Algorithm performances"
- S.Copello, "The CUORE data acquisition system"
- V.Dompè, "The CUORE pulse tubes noise cancellation technique
- G.Fantini, "Noise reduction techniques for the CUORE experiment"
- I.Nutini, "The CUORE bolometric detectors: pulse shape analysis of the thermal signals"

I.Nutini, LTD-18 conference - July 25th, 2019

Backup

CUORE initial operations

- Cryogenic system commissioning: Completed in Feb.2016
- Detector assembly and installation: Completed at the end of Aug. 2016
- First Detector cool-down: Started at the beginning of Dec. 2016
- First CUORE data and detector initial characterization and optimization: Early 2017

Noise contribution on the CUORE detectors

Spectral shape of the noise of the CUORE channels: a very complex spectrum, which is the sum of several contributions.

Transmission of vibrations by the cooling system appeared to be the dominant noise contribution on the bolometers.

Pulse Tubes induced vibrations

(peaks at 1.4 Hz and its harmonics, which is the frequency of the pressure waves generated by the PTs).

—> Pulse Tube active noise cancellation

 Residual mechanical vibrations and oscillations related to the suspension and support structure (e.g. 0.6 Hz, 0.85 Hz, 3.3 Hz, ..).

—> Passive damping systems

Load Curves analysis and NTDs Working Points selection

Detector performance - Energy resolution

I.Nutini, LTD-18 conference - July 25th, 2019

Detector performance - Energy resolution

Calibration spectrum

 Energy resolution in calibration runs @²⁰⁸Tl decay gamma-peak

Energy resolution at 2615 keV in calibration

Dataset 1: 9.0 keV FWHM Dataset 2: 7.4 keV FWHM Average: 8.0 keV FWHM - exposure weighted

Improved resolution from Dataset 1 to Dataset 2 due to :

- Investigation and upgrades to the electronics grounding
- Active cancellation of the PTinduced noise
- Optimization of the operating temperature and detector working points
- Software and analysis upgrades

First results from CUORE: Background model

Monte Carlo reconstruction of the CUORE background: the bayesian approach

- Data split into four types of energy spectra:
 - by-layer: **L0 inner**, **L1 outer**
 - by-multiplicity: Multiplicity 1 (M1), Multiplicity 2 (M2)
- 60 background sources simulated
- MCMC fit with uniform priors (except muons)

I.Nutini, LTD-18 conference - July 25th, 2019

CUORE background budget

CUORE sensitivity and perspectives

CUORE 0vßß exclusion sensitivity in 5 years (90% C.L.):

S_{0v} ~ 9 x 10²⁵ yr

```
wiith
nominal background: 10<sup>-2</sup> c/(keV·kg·yr)
```

and

nominal energy resolution : 5 keV FWHM in the Region Of Interest (ROI)

Next generation of $0\nu\beta\beta$ decay experiments seek is to be sensitive to the full Inverted Hierarchy region: Sensitivity **S**₀v ~10²⁷ yr, m_{ββ} ~ 6 - 20 meV

CUPID (CUORE Upgrade with Particle ID) project: 10^{-1} build a future experiment with ~ 1500 enriched light ¹⁰ emitting bolometers mounted in the CUORE cryostat, reaching nearly zero background goal, Bkg < 10⁻⁴ c/ (keV·kg·yr)

