

Alessandro Schillaci California Institute of Technology on the behalf of the Bicep/Keck Collaboration LTD18 - Milan - 07/23/2019

Polarized power spectra

E-Mode count as 10% of CMB anisotropies signal and have been detected.

B-Mode power depends from the energy scale of the primordial Gravitational Waves and they have not been detected yet.

r is defined as the ratio of tensor to scalar amplitude and it requires clean sensitive and very measurements.

Credit: W. Hu

South Pole Station

Main Station and Facilities

Keck Array (2011-2018) BICEP Array (2019-)

- Located at the NSF Amundsen-Scott South Pole Station
- Dry, stable atmosphere, high altitude
- 24 hours coverage of the Southern Sky with no elevation drift
- \sim 1.5 % of the sky, focus on \sim 600 deg² patch

BICEP (2006-2009) BICEP 2 (2010-2012)

BICEP 3 (2015-)

BICEP Array

Antenna-Coupled TES Bolometers for CMB Polarimetry

Wafers on the sky to date: 40 (95 GHz); 32 (150 GHz); 16 (220 GHz); 8 (270 GHz)

BICEP Array facts

Cryostat based on Keck Array, Sub-K & Focal Plane based on BICEP3

Replace Keck Array in 2018, new mount.

4 Receivers:

- 30, 40 GHz
- 95 GHz
- 150 GHz

• 220, 270 GHz

BICEP Array expected sensitivities

Frequency	30/40 GHz	95 GHz	150 GHz	220/270 GHz
Tiles	12	12	12	12
# Detectors	192/300	3456	7776	13824/16224
# Det/ Tile	32/50	288	648	1152/1352
Beam FWHM (arcmin)	76/57	24	15	10/8.5
NET per det (uK-rts)	268/334	267	315	900/1800
Instr. NET (uK-rts)	21/21	4.93	3.87	8.3/15
3-yr map depth (uK-arcmin)	7.5/7.5	1.9	1.4	3.0/5.5

BICEP Array: BA1 receiver integration and test

BICEP Array: Focal Plane and Modules

150GHz Mux/Nyq PCB (44 rows/ 16 cols)

BICEP Array: BA1 40GHz Module Spectral Response and Noise

BICEP Array: BA1 40GHz Antenna Beams

See A. Soliman poster

BICEP Array: Mount integration and test

- The new mount is fully operative at UMN.
- BA-2 cold on mount with a 40GHz module.

BICEP Array: projected sensitivities

BK and SPT-3G communities working together for delensing

LTD18 - Alessandro Schillaci - Milan 2019

30/40GHz Diplexer

Work by Corwin Shiu, assisted by Bryan Steinbach, Roger O'Brient, and Krikor Megerian

Black dashed lines are model, white is f/1.5 stop

30GHz Band OE=35%

40GHz Band=28%

Microwave multiplexing (umux)

Frequency-domain multiplexing for DC-biased TESs

- Shunted resonances on single transmission line
 - TES current alters resonance frequency through rf SQUID
 - Signal is frequency modulation (FM)
- ~2000x over 4-8 GHz
- On-sky CMB demonstration with Keck 2019 @ 150GHz

See Ari Cukierman Talk on Wed 8:45

Thermal Kinetic Inductance Detectors (TKIDs)

- Bolometers with kinetic inductance thermometers
- KID-like readout, more design parameters
- Background limited for South Pole at 90GHz and higher
- 1/f ~1Hz
- 20aW/rtHz at 10Hz
- ~1ms time constants

See Albert Wandui's Talk on Fri 2:45pm

See Lorenzo Minutolo's Poster

Detector packing Analysis by Lorenzo Moncelsi, Roger O'Brient, Corwin Shiu

- Will have circular footprint, hex-pack more pixels in focal planes.
- With the same target beam, uniform illumination allows pixels to be ~90% smaller than gaussian illuminated, so could nearly double the pixels count (bolometers and bias lines reduce this advantage some)
- Left: Dashed line shows uniform size over gaussian illumination at the feed
- Right: Similar gain and edge taper in resultant beams

Conclusions

- BICEP/Keck is producing the deepest maps in polarization at low-l CMB and with BK15 we have the lowest constrain on r ever published.
- 3 years (2016-2018) of 95GHz data from Bicep3 and 2 years of 270GHz from Keck to be added to analysis (BK18 data analysis See Howard Hui Poster).
- BICEP Array 30/40GHz first receiver is performing well and it is getting ready for deployment in the incoming 2019/2020 austral summer.
- Expect to detect synchrotron in BK patch with only 1 year of observations!
- Next 150GHz receiver is almost fully designed and partially built for 2020/2021 deployment season

BICEP/Keck Synchrotron constraint

