Kilopixel-Scale Arrays of Kinetic Inductance Detectors on 150 mm Diameter Substrates for the ToITEC Millimeter-Wave Polarimeter

Jason "Jay" Austermann

NIST-Boulder / CU-Boulder

LTD-18 Milan, Italy July 2019

Focal Plane Complexity

Deployed TES ARRAY (~ 2000 Detectors)

- 1000's wire bonds
- 1000's SQUID amplifiers
- hundreds of additional SC components
- dozens of cables

Focal Plane Complexity

Deployed TES ARRAY (~ 2000 Detectors)

- 1000's wire bonds
- 1000's SQUID amplifiers
- hundreds of additional SC components
- dozens of cables

MKID

Integrated readout

- e.g. Toltec MKID (4000 detectors)
- 14 wire bonds
- 14 Coax cables
- 7 LNAs (at 4K stage)

Toltec 1.1 mm

(Shown at same scale) Advanced

ACTPol (MF)

Pixel Design

Feedhorn coupled waveguide

Dual Polarization, Single Band

LTD18 - July 2019

Trilayer (TiN/Ti/TiN) Inductor

Dual Polarization, Single Band 1 mm Inductor/ Inductor/Absorber optimizations: Capacitor Absorber - Optical Efficiency (impedance) (IDC) for - Responsivity (volume) Y-axis Pol - low cross-pol (width) - transition temperature (thickness) - wavelength sets minimum length Capped with aluminum 5 competing geometric Feedline optimizations Extra free Exposed parameter TiN trilayer 20 µm patches

LTD18 - July 2019

Measured Optical Performance

Excellent cross-pol rejection

Passbands Match Simulation

Austermann et al. 2018

LTD18 - July 2019

Challenges of scaling to large diameter (150 mm) arrays

Primary Challenges of components on large scales:

Feedhorns

- Differential Contraction (CTE) (if metal horns/mount)
- Precision (uniformity/alignment)

Air gap & Choke

- Precision / Opt. efficiency
- Uniformity / Planar
- Microphonics

Detectors

- Frequency spacing
- Uniform performance

LTD18 - July 2019

Feedhorn Arrays

1.1 mm Feedhorn Array

Jason Austermann - NIST/CU - Boulder

angle

Angle

Challenges of scaling to large diameter (150 mm) arrays

Primary Challenges of components on large scales:

Feedhorns

- Differential Contraction (CTE) (if metal horns/mount)
- Precision (uniformity/alignment)

Air gap & Choke

- Precision / Opt. efficiency
- Uniformity / Planar
- Microphonics

Detectors

- Frequency spacing
- Uniform performance

Waveguide Interface Plate (WIP) An all silicon solution

Spring force

LTD18 - July 2019

Waveguide Interface Plate (WIP) Made from 2 parts

Choke Structures

Aluminum plated for low-loss (close proximity to resonators)

Standoffs ("feet")

LTD18 - July 2019

Challenges of scaling to large diameter (150 mm) arrays

Primary Challenges of components on large scales:

Feedhorns

- Differential Contraction (CTE) (if metal horns/mount)
- Precision (uniformity/alignment)

Air gap & Choke

- Precision / Opt. efficiency
- Uniformity / Planar
- Microphonics

Detectors

- Frequency spacing / Multiplexing
- Uniform performance

LTD18 - July 2019

Detector Aray

Toltec 1.1mm Detector Array (~4000 KIDs)

7 networks

1.1 mm Array

Network	Resonators
Net1	684
Net2	522
Net3	558
Net4	564
Net5	556
Net6	510
Net7	618
Total	4012

net2

net3 net4 net5

net6

Network 7

Array Uniformity = High Yield

Resonator Collisions

(under moderate loading)

Expected non-collision yield vs. resonator Q

McKenney et al 2018

No post-fab editing (yet)

Jason Austermann - NIST/CU - Boulder

LTD18 - July 2019

Optical Characterization with Blackbody

5.000

5.005

Increasing Load

Temperature

Responsivity Uniformity

5.020

5.025

Frequency (MHz)

LTD18 - July 2019

4.995

80

D21

20

Jason Austermann - NIST/CU - Boulder

5.030

1e8

Noise and Optical Efficiency

(example pixel from full array)

Noise Spectrum (multiple blackbody temperatures)

Noise Equivalent Power (NEP)

Summary

- KID arrays on 150 mm diameter substrates
 - Excellent optical performance matching simulations
 - No signs of degradation in performance or local uniformity compared to small array prototypes
- All-silicon packaging
 - microphonic noise eliminated or significantly reduced
 - No breakage (so far)
 - Superior alignment and uniformity
- On-sky KID verifications coming in the next ~6 months (ToITEC & BLAST)
 - Toltec: 1100 μm 1400 μm 2000 μm (270 / 220 / 150 GHz)
 - BLAST: 250 μm 350 μm 500 μm (1200 / 850 / 600 GHz)

Focal Plane Complexity

Deployed TES ARRAY (~ 2000 Detectors)

- 1000's wire bonds
- 1000's SQUID amplifiers
- hundreds of additional SC components

- dozens of cables

MKID

Integrated readout

- e.g. Toltec MKID (4000 detectors)
- 14 wire bonds
- 14 Coax cables
- 7 LNAs (at 4K stage)

Toltec 1.1 mm

(Shown at same scale)

Advanced ACTPol (MF)

LTD18 - July 2019

Fine

LTD18 - July 2019

Extra slides

LTD18 - July 2019

Order of magnitude frequency coverage

Jason Austermann - NIST/CU - Boulderatmospheric model, 0.5 PMV

Integration/ Coupling

Low Noise Amplifiers (4K) below focal plane

LTD18 - July 2019