220/280 GHz Multichroic Feedhorn-Coupled TES Polarimeters for CMB Measurements

Samantha Walker¹, ², Carlos Sierra³, Jason Austermann², James Beall², Daniel Becker¹, ², Bradley Dober², Shannon Duff², Gene Hilton², Johannes Hubmayr², Jeffrey McMahon³, Sara Simon³, Joel Ullom¹, ², Jeffrey Van Lanen², Michael Vissers²

Orals LM 003,183, 9:45-10:00am, July 24th, 2019

¹ Quantum Sensors Group, National Institute of Standards and Technology, Boulder, Colorado
² University of Colorado Boulder, Boulder, Colorado
³ University of Michigan, Ann Arbor, Michigan
Distinguishing foregrounds from the cosmic microwave background (CMB)

CMB absolute temperature: 2.7K
Scale: ± 500μK

The Simons Observatory Collaboration, 2019

ESA and the Planck Collaboration
NIST multichroic feedhorn coupled approach

Advanced ACTPol high frequency band

Pixel Array

Feedhorns

A state of the art array at 90/150 GHz has ~2000 TES bolometers.

Datta, R. et al., 2016 (ACTPol Collaboration)
NIST TES polarimeter program
NIST TES polarimeter program
Simons Observatory (SO)

Large ground-based CMB experiment in the Atacama Desert with four telescopes. Planned to begin observations in the early 2020s.

Instrument details
- 1 large-aperture 6-m telescope (LAT) to map small angular scales.
- 3 small-aperture 0.5-m refracting telescopes (SATs).
- 6 observation frequencies: 27, 39, 93, 145, 225, 280 GHz.
- Total of 60,000 bolometric sensors.

UHF pixel (190-315GHz)

a 960μm diameter waveguide orthomode transducer (OMT).
b 220/280GHz diplexer (4 total).
c 220 or 280 GHz band optimized hybrid tee.
d and e 4 optical TESs, one for each polarization and passband. Also, two non-optically coupled, or dark, TESs (not shown).
a Planar orthomode transducer (OMT)

As fabricated, face down view

OMT side view

Coupling summary from 3D HFSS simulation

LTD-18, Samantha Walker
b Diplexer

As fabricated

Sonnet 2.5D simulation

FTS measurements with simulations

LTD-18, Samantha Walker
Challenge: Filtering multiple waveguide modes

- Issue: The circular waveguide supports multiple modes, but we only wish to measure the single lowest order mode, TE11.
- Coupling to multiple modes impacts:
 - Polarization response
 - Angular resolution

LTD-18, Samantha Walker
Two termination schemes, A and B

A: Hybrid tee + distributed resistor

Approach taken by NIST and NASA/Goddard (J. McMahon et al. 2011).

B: Lumped, differential resistor

Approach taken by UC Berkeley (M. Meyers et al. 2006).
c A termination: Hybrid

As fabricated

From OMT probe 1

Differential output (TE11), to TES

Summation output (TM10), dissipated on substrate

From OMT probe 2

From 2.5D Sonnet simulation

LTD-18, Samantha Walker
d A termination: Nb to Au transition and TES

As fabricated

Distributed resistor (Nb to Au transition)

From Sonnet 2.5D simulation

Reflection (S11)
e B termination: Termination resistor and TES

As fabricated

Total impedance: 21.6Ω
Material: PdAu

From Sonnet 2.5D simulation
Optical efficiency experimental setup

Optical efficiency determined by measuring power change in detectors as a function of temperature change of a cryogenic blackbody (lower left).

The 4-pixel test board is also shown (right).
dP vs. dT, 220 (left) and 280 (right)

d\text{P}_{\text{Load}} \text{ calculated for a single-mode includes simulated passbands and corrections for free space filter loss.}
UHF optical efficiency

<table>
<thead>
<tr>
<th>Type</th>
<th>Raw</th>
<th>With dark subtraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>220A</td>
<td>96.9% ± 1.4%</td>
<td>78.0% ± 2.2%</td>
</tr>
<tr>
<td>220B</td>
<td>99.7% ± 3.9%</td>
<td>80.5% ± 5.6%</td>
</tr>
<tr>
<td>280A</td>
<td>98.9% ± 3.8%</td>
<td>73.3% ± 3.7%</td>
</tr>
<tr>
<td>280B</td>
<td>105.4% ± 3.4%</td>
<td>79.8% ± 3.8%</td>
</tr>
</tbody>
</table>

Optical efficiency is defined as:

\[
\eta = \frac{dP}{dP_{Load}}
\]

- Our prediction of optical efficiency for our experimental setup, accounting for loss due to the diplexer and OMT, is 90.7% for 220 and 91.5% for 280.
- In the table above, loss due to free space filters external to our feedhorns has been corrected for.
- Uncertainty is a quadrature error of N=21 (7 dT points and measured on 3 different days).
Using either a hybrid tee and distributed resistor (A) or lumped termination resistor (B) for filtering multiple waveguide modes yields equivalent optical efficiency and passbands.

The measured values for optical efficiency in the 220 and 280 GHz bands are about 11.5% and 15% lower than the expected values, respectively. This discrepancy might be explained by one or a combination of the following:

1. Less coupling to the OMT than we expect because the waveguide gap is larger than 25μm above/below the probes.
2. We are over subtracting power when we perform the dark subtraction. In dark subtraction, we assume the power coupled to a dark bolometer is the same as the direct pickup in the optical detectors.
3. We actually do have 11.5% and 15% more loss in our horn/detector system.
Conclusions

1. We have demonstrated a working prototype of a multichroic feedhorn-coupled 220/280 GHz detector pixel.
2. Measured passbands match well to simulations and optical coupling is good.
3. After a second prototype, the UHF pixel will be implemented for arrays to be fielded in ground-based instruments for the Simons Observatory.
Acknowledgements

This work would not have been possible without my collaborators at NIST Boulder/CU Boulder and the University of Michigan.

This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1144083.

This work was supported in part by the NASA APRA program, grant #NNX17AL23G.
Extra Slides
Pload calculations

We peak normalize our passband simulations and calculate the theoretical loading for our detectors as:

\[P_{load} = \int_{\nu_1}^{\nu_2} d\nu \frac{h\nu}{e^{x-1}} F_0(\nu) F_1(\nu) F_2(\nu) \]

where \(x = h\nu/kT \) and \(F_i(\nu) \), where \(i = 0, 1, 2 \) correspond to the peak normalized simulated passband, the 14icm filter response, and the 11icm filter response.

Pload was simplified using the assumption that the spectral radiance is described by a Planck blackbody and our detectors are single-moded.