Precision characterization of thermal circuits and noise of TES microcalorimeters

<u>Avirup Roy</u>¹, <u>Felix Jaeckel</u>¹, Conjeepuram Ambarish¹, Nick Christensen¹, Dan McCammon¹, Mari McPheron¹, Kari Nelms¹, Dallas Wulf¹ ¹University of Wisconsin Madison, Madison, WI, 53706 USA

> Kelsey Morgan², Daniel Schmidt², Daniel Swetz², Joel Ullom² ³National Institute of Standards and Technology, 25 Broadway, Boulder, CO 80305

Jay Chervenak³, Megan Eckart^{3,4}, Stephen Smith³, Nick Wakeham³

³NASA - Goddard Space Flight Center, 8800 Greenbelt Rd, Greenbelt, MD 20771, USA ⁴Lawrence Livermore National Laboratory, 7000 East Ave, Livermore, CA 94550

Motivation

Toolbox

Device under test

- 150 μm x 150 μm Mo/Cu TES
 Tc ~ 75 mK
- Absorbers: 3.4 µm Bi (evaporated)
- ΔE at 1.25keV: 1.0 to 1.5eV (typical)

Shapiro steps

ASC 2016:

Jack Sadleir, "Unexpected nonlinear effects in superconducting transition-edge sensors." (2016)

Determination of shunt resistance

Thévenin circuit treatment

Superconducting/Normal TFs for G8C/TES2 (2019-04-24 17:48:08)

 $R_n = 10.661 \text{ m}\Omega \text{ at } T_{adr} = 130.00 \text{ mK} (T_{sc} = 66.99 \text{ mK})$

 $\rm R_{SHUNT}$ and $\rm R_{TES}$ independently fixed from Shapiro steps and IV curves.

- 1. Thevenized circuit accurately accounts for circuit strays
- 2. Complex impedances can be measured from ratios of SC and Normal transfer functions
- 3. Consistency check:

 $\frac{TF_{SC}}{TF_{normal}} = \frac{R_{shunt} + i\omega L}{R_{shunt} + i\omega L + R_{TES}}$ Fits with a single free parameter (inductance L) out to 250 kHz.

Lindeman, Mark A., et al. "Impedance measurements and modeling of a transition-edge-sensor ⁸ calorimeter." *Review of Scientific Instruments* 75.5 (2004): 1283-1289.

Thermal models

One-block basic model

$$Z_{TES}(\omega) = R_0(1+\beta_I) + \frac{\mathcal{L}}{1-\mathcal{L}} \frac{R_0(2+\beta_I)}{(1+i\omega\tau_I)} \qquad \qquad \mathcal{L} = \frac{P_0\alpha}{GT_0}$$

$$Z_{TES,H}(\omega) = R_0(1+\beta_I) + \frac{\mathcal{L}_{\mathcal{H}}}{1-\mathcal{L}_{\mathcal{H}}} \frac{R_0(2+\beta_I)}{\left(1+i\omega\tau_I - \frac{g_{tes,1}}{g_{tes,1}+g_{tes,b}(1-\mathcal{L}_{\mathcal{H}})}\right)} \frac{1}{1+i\omega\tau_1}$$
$$\mathcal{L}_{\mathcal{H}} = \frac{P_0\alpha}{\left(g_{tes,1}+g_{tes,b}\right)T_0} \qquad \tau_1 = \frac{C_1}{g_{tes,1}} \quad \tau_I = \frac{C_{tes}}{\left(g_{tes,1}+g_{tes,b}\right)\left(1-\mathcal{L}_{\mathcal{H}}\right)}$$

Multi-body models easily numerically solved using the matrix method (E. Figueroa-Feliciano) Irwin, K. D., and G. C. Hilton. "Cryogenic particle detection." Topics in Applied Physics 99 (2005): 63-149.

Maasilta, Ilari J. "Complex impedance, responsivity and noise of transition-edge sensors: Analytical solutions for two-and three-block thermal models." *AIP Advances* 2.4 (2012): 042110.

Figueroa-Feliciano, Enectali. "Complex microcalorimeter models and their application to position-sensitive ⁹ detectors." *Journal of Applied Physics* 99.11 (2006): 114513.

Transfer Function Fits G8C/TES3: NIST dtest21a #5 AC drive=40 mV

Im(Y)

Measuring complex admittance

 I_0 , R_0 , T_0 are determined by fitting local cubic splines of TES IV sweeps at bias points used in taking TFs

$$\beta_{I} = \frac{1}{R_{TES} \Re(Y(\omega_{\infty}))} - 1$$
$$\mathcal{L} = 1 - \frac{1 + \beta_{I} R_{TES} \Re(Y(\omega \to 0))}{1 + R_{TES} \Re(Y(\omega \to 0))}$$
$$\alpha = \frac{\mathcal{L}GT_{0}}{I_{0}^{2} R_{0}}$$
$$\tau = \frac{1}{2\pi f_{max}} |_{\Im(Y(f=f_{max}))'=0}$$

Fit results: single body model

Free fit parameters:

- α (vary within 5% of DC value)
- 2. β (vary within 5% of high 1 limit)
- 3. Cres (seed value of GT_{tes})

Complex admittance fits: 2 body model

Fit results: 2-body model

Current noise: single body model

f(Hz)

in (pAV/HZ)

Photon pulses

0.2

0.0

Bunches of 3 eV photons made by the laser pulser form pulse templates **Note:** This is not a fit but a prediction of pulse shape using derived parameters from TF fits.

Multi-bias current pulse templates for basic model

Complex impedance with multitone lock-in

Measure complex impedance across the transition surface quickly and efficiently (Mark Lindeman 2008)

•Excite with $V_{bias} = V_{DC} + \sum_i A_i sin(\omega_i t)$ and demodulate V_{squid} at all ω_i of interest

•We do it in real time with DAQ & software lock-in on a PC (~ 20 frequencies simultaneously)

•Final lock-in LP filtering using non-causal forward-backward filter to avoid phase shifts

•Sweep bias and keep other parameters fixed

•Record accurate DC level to track bias point

Measured and fit 50,000 TF overnight to produce detailed maps of α , β , R_{tes} vs applied magnetic field and ₂₀ operating temperature

Conclusions

- 1. Shapiro steps give repeatable, high accuracy determination of shunt resistance.
- 2. Thevenin equivalent circuit method results in accurate impedance measurements.
- 3. Small signal pulses (e.g. photon pulser) help inform thermal model.
- 4. Devices investigated here described well by two-body model does a good job.
- 5. More work remains to be done to fully close the loop.

BACKUP

Transfer Function Fits G8C/TES2: NIST dtest21a #2 AC drive=40 mV

Shapiro step-height (Step 10) ATH1 C150715b128f Bottom #15 (25% perf) Transfer Function Fits G8C/TES2: NIST dtest21a #2 AC drive=40 mV

TES: TES2 Model: two-body

