Contact-less phonons-mediated KID with massive absorber for rare events search LTD18 - Milan

Presenter: Jules Colas Collaborators: J. Goupy, M. Calvo, J. Billard, P. Camus, R. Germond, A. Juillard, L. Vagneron, M. De Jesus, F. Levy-Bertrand and A. Monfardini Date: July 2019

- 1. Introduction
- 2. Method
- 3. Results
- 4. Conclusion

Introduction

General principle

"Contact-less" approach

Main advantages

- No phonons loss in the feedline
- More R&D flexibility :
- decoupling between readout and sensor
- less constraints on sensor manufacturing

Method

Protocol / Experiment

The materials

- Resonator and Feedline = thin film Aluminum (Lumped Element)
- Resonator thickness = approx. 40nm and 20nm (2 prototypes) KIDs fabricated at CNRS Grenoble, e.g. NIKA/NIKA2
- Massive absorber = 30g crystalline silicon (36*36*10 mm)

Cryogenic

- Dilution refrigerator
- Base temperature = 200mK

Radioactive source

- ²⁴¹Am $\rightarrow \alpha$ **5.45MeV**, γ **60keV**, ...
- α activity \approx 3kBq

Detector design

Resonator's filling factor $\approx 0.2\%$ Absorber held in place by small clamp

Special thanks to Lionel Vagneron from IPNL for the holder design ! (drawing not to scale)

Simulation - Misalignment/Spacing

Misalignment

not a big issue on X and Y axis Z axis may be more problematic ...

This simulation is done by considering a <u>40nm thick resonator</u>.

Results

Electrical measurements - IQ circle and resonances

Keypoints

- High Q-factors
- Good response
- Fair agreement simul./meas. [4]
- $\begin{array}{l} \rightarrow \quad Q_i^{\rm simu} \approx 2.10^5 \\ Q_i^{\rm exp} \quad \approx 4.10^5 \end{array}$
- → $f_{\rm r}^{\rm simu} \approx 560 {\rm MHz}$ $f_{\rm r}^{\rm exp} \approx 564.7 {\rm MHz}$

$\hookrightarrow \textbf{ Design is controlled}$

These are the data for the 20nm thick resonator.

Detuning as a function of T

Assumptions/Model

- Mattis-Bardeen theory
- $hf \ll \Delta$, T $< T_C/3$
- α = kinetic inductance fraction $L_{\rm k}/L_{\rm tot}$

Keypoints

- $L_k^{20nm} \approx 3.L_k^{40nm}$
- $\Delta_{fit} \approx \Delta_{BCS}(0.197 meV)$

- Very good agreement with MB theory
- Uncertainties about the thicknesses
- Useful to estimate the absorption efficiency η (see backup)

Pulse shape investigation

We expect **3 time constants** (ph, qp, ring)

Observations

- Exp. model with 2 characteristics times
- $\rightarrow \tau_{\sf rise}$ and $\tau_{\sf decay}$
- $\tau_{\rm rise}$ and $\tau_{\rm ring} = Q_L/\pi f_r$ correlated
- τ_{decay} = Phonons limited? (analysis ongoing)

Values at 200mK

- $\tau_{\rm decay} = 125~\mu{
 m s}$
- $\tau_{\rm rise} = 104~\mu{
 m s}$
- $\tau_{\rm ring}=$ 83 $\mu{
 m s}$

Energy spectrum

Results

- Noise baseline resolution = 1.42keV (ref.=α peak)
- MC smeared simulation \rightarrow visible 60keV peak
- \hookrightarrow BUT no clear 60keV peak in the exp. data
- \hookrightarrow **Position dependency** for 60keV ? (+ lower E. X)
 - Estimated energy absorption efficiency (for $\alpha)~\eta < 1\%$

Conclusion

A quick summary

We are here

- Contact-less design is controlled (fr, Q-factors,...)
- Noise energy resolution = 1.4keV (RMS)
- Absorption efficiency less than 1%

Future work and goals

- Reduce the low frequency noise \rightarrow $\times 2$ energy resolution
- Increase the phonons energy absorption efficiency to few %
- Refine the design, use lower T_c materials, optimize the absorber, add more resonators, ...

$\, \hookrightarrow \, \textbf{Final goal} \,$

Achieve the best energy resolution possible and low energy threshold on massive absorber (DM, ν physics,...)

L. Cardani et al.

Energy resolution and efficiency of phonon-mediated kinetic inductance detectors for light detection.

Applied Physics Letters, 107(9), 8 2015.

M. Martinez et al.

Measurements and simulations of athermal phonon transmission from silicon absorbers to aluminum sensors. *Phys. Rev. Applied*, 11:064025, Jun 2019.

D. Moore et al.

Position and energy-resolved particle detection using phonon-mediated microwave kinetic inductance detectors. *Applied Physics Letters*, 100, 03 2012.

S. Probst, F. B. Song, P. A. Bushev, A. V. Ustinov, and M. Weides. Efficient and robust analysis of complex scattering data under noise in microwave resonators.

Review of Scientific Instruments, 86(2):024706, 2015.

L. J. Swenson et al.

High-speed phonon imaging using frequency-multiplexed kinetic inductance detectors.

Applied Physics Letters, 96(26):263511, 2010.

Backup slides - Detuning as a function of absorbed Energy

$$n_{qp} = N_q p / V = 2 N_0 \sqrt{2\pi k_B T \Delta_0} e^{-\Delta_0 / k_B T}$$

$$\eta_{\alpha} = \frac{11e^3}{564e^6 \times 1.2e^{-6} \times 5.45e^3} \approx 0.3\%$$

Keypoints

- $T \rightarrow n_{qp} \rightarrow E$
- Detuning \propto E
- Sensitivity 3.5 greater with 20nm device

Efficiency estimation

$$\eta = rac{\delta f^{ ext{measured}}}{\delta f^{ ext{expected}}} = rac{\Delta f^{ ext{measured}}}{f_0 |\beta| E^{ ext{expected}}}$$

Backup slides - Noise spectrum (preliminary)

