Energy resolution of aluminium MKIDs at visible/near-infrared wavelengths

Jochem Baselmans

LTD 2019, Milano

Are we alone?

- 1000's of exoplanets found
- Several dozen in habitable zone
- Now is the time to find out what 'lives' on these planets

TRAPPIST-1 System

Breath analysis: a spectrum of the planet's light

- 10¹⁰ larger signal from star than planet => null the star
- Still only <1 photon/second from planet
- Detector required with zero noise and ideally R~100

Solution: superconducting detectors

Microwave Kinetic Inductance Detector

MKID detector – colour information

Energy resolution = zero dark current and read noise

SRON visible/near-IR MKIDS research in two directions

Improving quantum efficiency NbTiN/TiN hybrid LEKIDs

- + readout electronics
- + lens coupling

Energy resolution / sensitivity NbTiN/Al hybrid CPW KIDs

Energy resolution limits

- Signal-to-noise
 - Volume
 - Q-factor
 - Kinetic inductance
 - Noise
 - Timing
 - Nonlinearities
- Current density uniformity vs. quasiparticle-diffusion
- Hot phonon loss
- Again phonons Fano limit

Role of phonons

- Convert 1-3 eV excitation into few thousand ~0.2 meV quasiparticle excitations
- Electron-phonon interaction
- Hot phonon loss
- Fano statistics in best case

 $\frac{\eta E}{F\Delta}$ $\frac{1}{2\sqrt{2\ln(2)}}$ *R* =

Role of phonons

- Convert 1-3 eV excitation into few thousand ~0.2 meV quasiparticle excitations
- Electron-phonon interaction
- Hot phonon loss ۲
- Fano statistics in best case

NbTiN-AI E-resolution study

- THz NEP promises R~60 at 400 nm
- Al KIDs are the only ones we really understand in detail
- This is NOT an efficient VIS/NIR detector

Setup 4 K -> 100 mK

4 K stray light

Optical fiber directly coupled to 100 mK box

Time trace of KID response with continuous 673 nm illumination

Pulse analysis

Linear optimal filter in frequency DC component left out

KID Phase only for now

Histogram

- Kernel density estimate of FWHM (+-5% uncertainty)
- Without low-E hits we get same FWHM with Gaussian fit

Resolving power AI MKID on substrate

dE = 0.08 - 0.15 eV

Factor 2-3 between NEP (signal-to-noise) and histogram measurement

Phonons?

ON

Trap phonons

• Thicker superconducting film keeps phonons longer

V

• 150 nm Al film destroys responsivity

Trap phonons

- 50 nm Al film
- 120 nm SiN membrane with 2 micron Al strip aspect ratio
- Geometric retrapping model, factor ~10 longer phonon dwell time

Resolving power

Measured histogram resolution substrate - membrane

Higher is better

Lower is better, lowest 41 meV

Resolving power

Gained factor 2.6 in R, effective factor 6.7 in phonon trapping

Still factor of 5 better phonon trapping needed for AI MKID

What is next?

- For this data:
 - Different ways of pulse filtering
 - Readout power dependence
- Towards Fano limit for Aluminium:
 - Design and control the phonon flow
 - Further improve the NEP ($dE^2 = dE_{Fano}^2 + dE_{NEP}^2 + ...$)
- Implement this in practical (LEKID) detectors:
 - Understand and quantify electron-phonon coupling in TiN, PtSi, etc.
 - How to combine fast with phonon trapping?
 - How to combine membranes with AR coatings?

Towards Fano limit: understand and design the phonon flow

Rostem, PdV, Wollack, Physical Review B 98, 014522 (2018)

Talk on Friday at 12.00

Puurtinen et al. This proceedings

Poster Tuesday

Low E hits due to NbTiN on membrane

Average pulse height on membrane

• Almost linear response vs energy

Trap phonons

- 120 nm SiN membrane with 2 micron wide, 50 nm Al strip aspect ratio
- Geometric retrapping model, factor ~10 longer phonon dwell time

Example simulation for very thin (20 nm) membrane and 50 nm film

New design, remove groundplane, 0.5 mm aperture to reduce groundplane absorption

Aperture of 0.5 mm in front of chip to reduce heating

Proof of phonon trapping from GR noise

Factor of 10-15 enhancement in noise level and lifetime

However, this is an equilibrium (or steady state) probe for a non-equilibrium (pulse) problem.

This is in contrast to power integrating detectors, where the pulse-lifetime is the nonequilibrium probe for a steady state problem.

Very dark setup \Leftrightarrow visible light

MKIDs are very sensitive - they see everything!

Glasses are transparent below ~500 GHz

