

European Research Council Istituto Nazionale di Fisica Nucleare Sezione di Roma

1

Cryogenic light detectors for background suppression: the CALDER project

Nicola Casali on behalf of the CALDER collaboration Low Temperature Detectors, Milano (Italy) Jul 21 - 26, 2019

CUORE: the tonne-scale macro-calorimeters array

Counts / (keV kg yr)

CUPID: CUORE Upgrade with Particle IDentification

- $v_{M} \neq C_{M}^{2\nu\beta}$ C IPID Interest Group <u>arXiv:1504.03612v1</u>
- Possibility to use the CUORE infrastructure for a future ton-scale 0vββ experiment
- 1. 250 kg of emitting isotope (isotopic enrichment)

BKG in the Rol ~ 1 counts/ton

Couple to each cryogenic calorimeter a light detector

2.

Exploit differences in the LY between α and β/γ interactions

CALDER

- Read-out and analysis tools; optimization of the detector geometry using AI resonator and 2x2 cm² Si substrate -> 80 eV RMS
- 2. Test of more sensitive superconductors, such as Ti+TiN, or TiAl -> resolution < 20 eV
- 3. Scale-up to the final detector size of 5x5 cm².

Phonon-mediated approach

- To get around the poor KID active surface an indirect detection of the photon interactions was proposed
- KIDs are evaporated on a large (cm²) insulating substrate (Si or Ge) that mediates the photon interactions converting them into phonons

• with a drawback: **phonons collection efficiency**

Detector characterisation

Amplitude [dB

- Basic resonance parameters evaluation with a fit of the frequency sweep of the transmitted signal
- From the center of the resonance loop we monitor the amplitude and phase variations induced by energy depositions
- Calibrated optical pulses (400 nm led bursts) in the range between 0.1 and 30 keV; and X-rays from 55Fe/57Co (as cross-check for the energy calibration)

- Basic resonance parameters evaluation with a fit of the frequency sweep of the transmitted signal
- From the center of the resonance loop we monitor the amplitude and phase variations induced by energy depositions
- Calibrated optical pulses (400 nm led bursts) in the range between 0.1 and 30 keV; and X-rays from 55Fe/57Co (as cross-check for the energy calibration)

Al prototype: results

Resolution constant in a wide temperature range (10-200 mK)

Combining phase and amplitude we obtained 82±4 eV

L. Cardani et al, Appl.Phys.Lett. 107 (2015) 093508 L. Cardani et al, Appl.Phys.Lett. 110 (2017) 033504

More sensitive superconductor: AITiAI

	AI	Ti+Al	Ti+TiN
<i>T</i> _C [K]	1,2	0.6-0.9	0.5-0.8
<i>L</i> [pH/square]	0,35	1,2	6?
$oldsymbol{Q}_i$ max	>106	1 0 ⁵⁻⁶	?
Phonon ε	10%	10%	low?
Producer	IFN-CNR	CSNSM Neel-CNRS	CNR/FBK
Status	Completed	Completed	Aborted

Same design as Aluminum films.

Titanium enhances Kinetic Inductance but lowers the internal *Q*.

Tested different TiAl and AlTiAl multilayers. Best results from:

AITiAl prototype: results

Energy scan with optical pulses

Absolute energy calibration with poisson

Phase Signal enhanced with respect to AI prototypes -> Phase RMS ~ 25 eV

Amplitude Signal is the same -> 80 eV RMS

L. Cardani et al, SU.S.T. 31 7 (2018)

Last CALDER phase: the 5x5 cm² detector

- Read-out and analysis tools; optimization of the detector geometry using AI resonator and 2x2 Si substrate -> 80 eV RMS
- 2. Test of more sensitive superconductors, such as Ti+TiN, or TiAl -> resolution < 20 eV
- 3. Scale-up to the final detector size of 5x5 cm².

Simultaneous phonon and light read out of Li₂MoO₄ crystal with KIDs

Simultaneous phonon and light read out of Li₂MoO₄ crystal with KIDs

Phonon Rise Time [µs]

Conclusions

- The CALDER project is closing this year:
 - A. 25 eV RMS with 10 μs response on 2x2 cm²
 Si light absorber
 - B. last prototype: 5x5 cm² with AlTiAl resonators
- First simultaneous measurement of phonon and light read out of a macro-calorimeter with KIDs.
- BULLKID: a study for an application of CALDER MKIDs in coherent neutrino scattering

Light detectors for CUPID

Talk by Laura Cardani: "Final results of the CUPID-0 Phase-I experiment"

- NTD Ge based light detector: Ge-NTD glued on a disk shape Ge wafer:
- * 40 eV baseline RMS
- * 1.8 ms pulse Rise Time

enough for the first CUPID phase, but not for the second one..

 Intense R&D activities exploiting TES, KID, NTD-Ge, + Neganov-Luke effect technologies to:
 # Improve the baseline RMS
 # Lower the pulse Rise Time

Pulse tube induced noise

The vibrations are induced in all the refrigerator structure, as a result also on the detector

Worsening of the energy resolution

A dry dilution refrigerator is precooled by a two-stage pulse tube refrigerator

Silicon on Saphire substrate: SOS

Silicon

SOS

KIDs on (SOS) are barely affected by the Pulse Tube induced noise Fundamental requirement for an application in the CUORE cryogenic facility