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Thin-Film Devices

Travelling-Wave Devices




Thin-Film Devices

Narrow band

High quality factor

Often easy to multiplex

Kinetic Inductance Detectors (KIDs)

Quantum bits (Qubits)




Thin-Film Devices

Wide band

Useful readout components
Parametric Amplifiers
Parametric Up Converters

Low-loss delay lines

Travelling-Wave Devices




Kinetic Inductance Nonlinearity
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Inductance when I = 0A

Supercurrent

Quadratic nonlinearity factor

Quartic nonlinearity factor

#B> UNIVERSITY OF

i iriﬁ -

“§ CAMBRIDGE



Zmuidzinas, 2012:
“MKIDs are usually operated in a regime in which the microwave currents
are strong and nonlinearity is becoming important.....”
Eom et al., 2012:
“A parametric amplifier that overcomes these limitations through the use of

a travelling-wave geometry and the nonlinear kinetic inductance of a
superconducting transmission line......”
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Numerically solving the Usadel equations

Superfluid Velocity: Quasiparticle Density of States:
vs = D[V — (2e/h)A] N = N, Re(cos 0)

> V20 + iEsin® + Acos @ —
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Usadel Equations — Densities of States

§ I'is the depairing factor o< 12

| F/AO = ‘I_O><‘]O'3 _> 1 — A/AO — 06 X 10_3
of /F/AO ARSI 1 — A/A, = 4.5 % 1073
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Nam’s Equations - Complex Conductivity

Full Nam’s conductivity integrals:

\\\ T 0-2 .
| Full DOS calculation =—p- oy f dE fn(sin6,cos 6, E)

547 Ag only calculation”
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Transmission Line Theory — Inductance

T

Al layer decreases
nonlinearity
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da; Al

100 nm Ti

| Multi-metal-layer

" Find L using transmission line model
= Varyinput I to obtain L(I)

=  Polynomial fit to obtain I, (and I, ,)



Romijin et al, 1982:

“If the width is larger than the coherence length, vortex nucleation and
vortex flow can be induced at high current densities....”

‘ ¢ = coherehnce length, {4, = 190 nm, ¢{7; = 60 nm

Previous Experiments: Realistic Device Dimensions:
w=30—120 nm w = order of a few um
t =20—90 nm t ~ order of 10s — 100s nm
Near perfect agreement How big can current be before
with theory result deviate from theory?




Experimental Method
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Experimental Method

Nb magnetic shield:

Mitigate environment

influences
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Experimental Method

Triple Al wirebond:

No current bottleneck!




Experimental Method
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Tc Measurements

I, - theoretical critical current at OK
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Tc Measurements

I, - theoretical critical current at OK

R UCOAARL IV ELTUVIRE [ . - experimental critical current at OK
. * w=3pm ¢ w=5um) | .

w = 3 um — good agreement for [ < %Io,c

w = 4,5 pm — good agreement for | < élo,c
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Tc Measurements

1
/< glo,c covers most

experimental applications

Do sl ~ igher [ is avoided because: Theory = wedam]
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Summary of Key Results

=  Numerical routine for I,
= Full densities of states
= Single or multi layer
"  Transmission line geometry

= Experiment comparing T,.(1I)
= Agreement with theory when I <1 4/3
= Experimentally useful range

= Technique useful to understand, optimize, and
design single / multi layer thin-film devices
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Questions?




No Data for Broken Lines
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Critical Current Calculation
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