

LTD 2019: Nonlinear Properties of Supercurrent-Carrying Single and Multi-Layer Thin-Film Superconductors

Songyuan Zhao Stafford Withington, David Goldie, Chris Thomas

Thin-Film Devices

Resonator Devices

Travelling-Wave Devices

Thin-Film Devices

Resonator Devices

Narrow band

- High quality factor
- Often easy to multiplex
- Kinetic Inductance Detectors (KIDs)
- Quantum bits (Qubits)

Thin-Film Devices

Wide band

- Useful readout components
- Parametric Amplifiers
- Parametric Up Converters
- Low-loss delay lines

Travelling-Wave Devices

Kinetic Inductance Nonlinearity

$$L = L_0 \left[1 + \left(\frac{I}{I_*}\right)^2 + \left(\frac{I}{I_{*,4}}\right)^4 + \cdots \right]$$

LInductance L_0 Inductance when I = 0AISupercurrent I_* Quadratic nonlinearity factor $I_{*,4}$ Quartic nonlinearity factor

Zmuidzinas, 2012:

"MKIDs are usually operated in a regime in which the microwave currents are strong and nonlinearity is becoming important....."

Eom et al., 2012:

"A parametric amplifier that overcomes these limitations through the use of a travelling-wave geometry and the nonlinear kinetic inductance of a superconducting transmission line....."

Analysis Routine

Temperature

T

- Green's functions
- Conductance σ
 - Surface impedance
- Ζ Series impedance
- Y Shunt conductance

Numerically solving the Usadel equations

Superfluid Velocity: $\vec{v}_{s} = D_{s}[\vec{\nabla}\phi - (2e/h)\vec{A}]$

Quasiparticle Density of States: $N = N_0 \operatorname{Re}(\cos \theta)$

$$\frac{\hbar D_s}{2} \nabla^2 \theta + iE \sin \theta + \Delta \cos \theta - \frac{\hbar}{2D_s} \vec{v}_s^2 \cos \theta \sin \theta = 0$$
$$N_s V_{0,S} \int_0^{k_B \Theta_{D,S}} dE \tanh\left(\frac{E}{2k_B T}\right) \operatorname{Im}(\sin \theta) = \Delta$$

Solved iteratively to obtain Δ, θ

$$\frac{\sigma_N}{eD_s} \int_0^\infty dE \tanh\left(\frac{E}{2k_BT}\right) \operatorname{Im}(\sin^2\theta) \vec{v}_s = \vec{j}$$

Relates solution to \vec{j}

Usadel Equations → Densities of States

Nam's Equations → Complex Conductivity

Transmission Line Theory → Inductance

Romijin et al, 1982:

" If the width is larger than the coherence length, vortex nucleation and vortex flow can be induced at high current densities...."

 ξ = coherehnce length, ξ_{Al} = 190 nm , ξ_{Ti} = 60 nm

Previous Experiments: w = 30 - 120 nmt = 20 - 90 nm

Near perfect agreement with theory Realistic Device Dimensions: $w \approx \text{order of a few } \mu m$ $t \approx \text{order of } 10s - 100s nm$

How big can current be before result deviate from theory?

Dilution Refrigerator

Nb magnetic shield: Mitigate environment influences

Tc Measurements

 I_0 - theoretical critical current at OK $I_{0,c}$ - experimental critical current at OK

$$w = 1 \ \mu m$$
 – good agreement for $I < \frac{2}{3}I_{0,c}$
 $w = 3 \ \mu m$ – good agreement for $I < \frac{1}{2}I_{0,c}$

Tc Measurements

 I_0 - theoretical critical current at OK $I_{0,c}$ - experimental critical current at OK

$$w = 3 \ \mu\text{m} - \text{good agreement for } I < \frac{1}{2}I_{0,c}$$

 $w = 4, 5 \ \mu\text{m} - \text{good agreement for } I < \frac{1}{3}I_{0,c}$

Tc Measurements

• $I < \frac{1}{3}I_{0,c}$ covers most experimental applications

- Higher *I* is avoided because:
 - Onset of dissipation
 - Bifurcation
 - Unaccounted higher order nonlinearity

Summary of Key Results

- Numerical routine for *I**
 - Full densities of states
 - Single or multi layer
 - Transmission line geometry
- Experiment comparing $T_c(I)$
 - Agreement with theory when $I < I_{c,0}/3$
 - Experimentally useful range
- Technique useful to understand, optimize, and design single / multi layer thin-film devices

Acknowledgements

Co-Authors: Stafford Withington, David Goldie, Chris Thomas

Test System: David Sawford

Fabrication: Chris Thomas, Michael Crane

Questions?

No Data for Broken Lines

Critical Current Calculation

