LTD 2019:
Nonlinear Properties of Supercurrent-Carrying Single and Multi-Layer Thin-Film Superconductors

Songyuan Zhao
Stafford Withington, David Goldie, Chris Thomas
Thin-Film Devices

Resonator Devices

Travelling-Wave Devices
Thin-Film Devices

- Narrow band
- High quality factor
- Often easy to multiplex
- Kinetic Inductance Detectors (KIDs)
- Quantum bits (Qubits)
Thin-Film Devices

- Wide band
- Useful readout components
- Parametric Amplifiers
- Parametric Up Converters
- Low-loss delay lines
Kinetic Inductance Nonlinearity

\[L = L_0 \left[1 + \left(\frac{I}{I_*} \right)^2 + \left(\frac{I}{I_{*,4}} \right)^4 + \cdots \right] \]

- \(L \): Inductance
- \(L_0 \): Inductance when \(I = 0 \)A
- \(I \): Supercurrent
- \(I_* \): Quadratic nonlinearity factor
- \(I_{*,4} \): Quartic nonlinearity factor
Zmuidzinas, 2012:

“MKIDs are usually operated in a regime in which the microwave currents are strong and nonlinearity is becoming important.....”

Eom et al., 2012:

“A parametric amplifier that overcomes these limitations through the use of a travelling-wave geometry and the nonlinear kinetic inductance of a superconducting transmission line......”
Analysis Routine

Geometries
Materials
T, I

Usadel Equations
θ

Nam’s Equations
σ

Transmission Line Theories
Z_s

Transfer Matrices
$L(I)$

Repeat for different I

$L(I)$

Y

T Temperature
θ Green’s functions
σ Conductance
Z_s Surface impedance
Z Series impedance
Y Shunt conductance
Numerically solving the Usadel equations

Superfluid Velocity:
\[\vec{v}_s = D_s [\vec{\nabla} \phi - (2e/h)\vec{A}] \]

Quasiparticle Density of States:
\[N = N_0 \Re(\cos \theta) \]

Solved iteratively to obtain \(\Delta, \theta \)

\[\frac{\hbar D_s}{2} \nabla^2 \theta + iE \sin \theta + \Delta \cos \theta - \frac{\hbar}{2D_s} \vec{v}_s^2 \cos \theta \sin \theta = 0 \]

\[N_s V_{0,S} \int_0^{k_B \Theta_{D,S}} dE \tanh \left(\frac{E}{2k_BT} \right) \Im(\sin \theta) = \Delta \]

\[\frac{\sigma_N}{eD_s} \int_0^\infty dE \tanh \left(\frac{E}{2k_BT} \right) \Im(\sin^2 \theta) \vec{v}_s = \vec{j} \]
Usadel Equations → Densities of States

\[\frac{\Gamma}{\Delta_0} = 1.0 \times 10^{-3} \]
\[\frac{\Gamma}{\Delta_0} = 6.1 \times 10^{-3} \]
\[\frac{\Gamma}{\Delta_0} = 11.2 \times 10^{-3} \]

DoS broadens!

\[1 - \frac{\Delta}{\Delta_0} = 0.6 \times 10^{-3} \]
\[1 - \frac{\Delta}{\Delta_0} = 4.5 \times 10^{-3} \]
\[1 - \frac{\Delta}{\Delta_0} = 8.4 \times 10^{-3} \]

Γ is the depairing factor $\propto I^2$

Δ_g – DoS gap
Δ – order parameter

Move at different rate
Nam’s Equations → Complex Conductivity

\[\frac{\sigma_2}{\sigma_N} \approx \frac{\pi \Delta}{\hbar \omega} \]

Full Nam’s conductivity integrals:

\[\frac{\sigma_2}{\sigma_N} = \int dE \, fn(\sin \theta, \cos \theta, E) \]

\[\frac{\sigma_2}{\sigma_N} \approx \frac{\pi \Delta_g}{\hbar \omega} \]

\(\Gamma \) is the depairing factor \(\propto I^2 \)
Transmission Line Theory → Inductance

- Find L using transmission line model
- Vary input I to obtain $L(I)$
- Polynomial fit to obtain I_* (and $I_{*,4}$)

- Al layer decreases nonlinearity
- d_{Al} Al
- 100 nm Ti

Multi-metal-layer

SiO_2
Romijin et al, 1982:

“...If the width is larger than the coherence length, vortex nucleation and vortex flow can be induced at high current densities....”

\[\xi = \text{coherence length}, \xi_{Al} = 190 \text{ nm}, \xi_{Ti} = 60 \text{ nm} \]

Previous Experiments:
- \(w = 30 - 120 \text{ nm} \)
- \(t = 20 - 90 \text{ nm} \)

Near perfect agreement with theory

Realistic Device Dimensions:
- \(w \approx \text{order of a few \(\mu \text{m} \)} \)
- \(t \approx \text{order of } 10s - 100s \text{ nm} \)

How big can current be before result deviate from theory?
Experimental Method

1. Set fixed I
2. Increase T
3. Record (I, T_c) at transition
Experimental Method

Nb magnetic shield: Mitigate environment influences
Experimental Method

Triple Al wirebond:
No current bottleneck!
Experimental Method

Nb Magnetic Shield

Triple Al Wirebond: No current bottleneck!

- **V** measurement pads
- **I** injection pads
- Thin, narrow test strip
Tc Measurements

I_0 - theoretical critical current at 0K
$I_{0,c}$ - experimental critical current at 0K

$w = 1 \, \mu m$ – good agreement for $I < \frac{2}{3} I_{0,c}$
$w = 3 \, \mu m$ – good agreement for $I < \frac{1}{2} I_{0,c}$

$I / I_0 \propto \left(1 - \frac{T_c}{T_{c,0}}\right)^{3/2}$ at small I
Tc Measurements

I_0 - theoretical critical current at 0K
$I_{0,c}$ - experimental critical current at 0K

$w = 3$ μm – good agreement for $I < \frac{1}{2} I_{0,c}$
$w = 4, 5$ μm – good agreement for $I < \frac{1}{3} I_{0,c}$

$I_c/I_0 \propto \left(1 - \frac{T_c}{T_{c,0}}\right)^{3/2}$

at small I

Vortex induced deviation?
Tc Measurements

- $I < \frac{1}{3} I_{0,c}$ covers most experimental applications

- Higher I is avoided because:
 - Onset of dissipation
 - Bifurcation
 - Unaccounted higher order nonlinearity
Summary of Key Results

- Numerical routine for I_*
 - Full densities of states
 - Single or multi layer
 - Transmission line geometry

- Experiment comparing $T_c(I)$
 - Agreement with theory when $I < I_{c,0}/3$
 - Experimentally useful range

- Technique useful to understand, optimize, and design single / multi layer thin-film devices
Acknowledgements

Co-Authors:
Stafford Withington, David Goldie, Chris Thomas

Test System:
David Sawford

Fabrication:
Chris Thomas, Michael Crane
Questions?
No Data for Broken Lines
Critical Current Calculation