Transition Edge Sensors for HOLMES LTD 18: 22-26 July 2019 Milan

Andrei Puiu on behalf of the HOLMES collaboration

The collaboration

PAUL SCHERRER INSTITUT

European Research Council

Established by the European Commission

PI: Stefano Ragazzi

Spectrometers and calorimeters

Calorimetric measurement with 163 Ho

 163 Ho + e⁻ \longrightarrow 163 Dy*+ ν_{a}

¹⁶³Ho decays via (EC) from shell ≥ M1, with $Q_{FC} \sim 2.8$ keV

Proposed by A. De Rujula and M. Lusignoli, Phys. Lett. B 118 (1982) 429

 $\frac{d\lambda_{\rm EC}}{dE_{\rm c}} = \frac{G_{\beta}^2}{4\pi^2} \underbrace{(Q - E_{\rm c})\sqrt{(Q - E_{\rm c})^2 - m_{\nu}^2}} \times \Sigma_i n_i C_i \beta_i^2 \frac{\Gamma_i}{2\pi} \frac{1}{(E_{\rm c} - E_i)^2 + \Gamma_i^2/4}$

Sentivity on neutrino mass and pile-up

Since all the events occurring within one detector are recorded without previous selection, pile-up becomes a crucial limiting factor

- events occurring closer in time than the timing resolution of the dector (τ_{R})
- sets the limit on the maximum activity (A_{FC}) of each detector

Number of events

(ERC-Adv. Grant 340321) PI:S.Ragazzi

HOLMES will:

- Measure m, with ~ 1 eV sensitivity
- Prove that calorimeters are a valid technique
- High precision *Q-vlaue* measurement of ¹⁶³Ho
- Systematic errors assesment

Short and medium terms

- 64 detectors array, $t_{\rm M}$ = 1 month $(m_{v} < 10 \text{ eV})$
- Final measurement: 1000 detectors, 3x10¹³ events in 3 y
- 6.5×10^{16} Ho nuclei needed ($\approx 18 \mu g$)

TES for HOLMES

Transition Edge Sensors Superconductive Detectors (TES)

- Very steep R vs T dependency in transition region
- Gold absorber with ¹⁶³Ho inside coupled to TES thermometer
- Ho sandwiched between two 1 μm thick gold layers for a total electron containment
- Fast detectors to reduce pile-up
 - tunable rise time ~ L/R
 - decay time dependent on detector characteristics C/G
- ✓ Production at NIST (Boulder, CO)✓ tested at NIST and in Milano
- ▶ ¹6³Ho implating facility at Genova
- > Final Au coverage at Mi-Ge

The cryogenics - Milan

TES array

First Transition Edge Sensors array

- 6 different designs to be tested
- Different thermal conductances G
- Different TES intrinsic parameters

Readout

• Each TES is coupled to a RF-SQUID

$$E \to \delta T_{\rm TES} \to \delta I_{\rm TES}$$

Readout

- Each TES is coupled to a RF-SQUID
- Every RF-SQUID is coupled to a common ramp

10

Time (ms)

0.1

0.0

Readout

- Each TES is coupled to a RF-SQUID
- Every RF-SQUID is coupled to a common ramp
- Every RF-SQUID is coupled to a resonant circuit

TES response

Calibration run performed with

 55 Fe (5.9 keV) + fluorescence from Ca - 3.7 keV

CI - 2.6 keV

Al - 1.5 keV

We tested four different designs to define:

- heat capacity
- thermal link geometry
- TES design

TES performance

HOLMES tested non implanted detectors → final design established

Stray iductance tuned to achieve pulse edge of $\tau_{\text{R}} \approx$ 10 μs

E [keV]	ΔE [eV]
1.49	4.5
2.62	5
3.69	5

Linearity

ROACH-2 readout

- FPGA (Virtex6 Xilinx) for data processing
- 550 MHz ADC
- > ROACH2 (real time)
 - Pulse reconstruction
 - Trigger
- Server (almost real time)
 - Optimum Filter and Pile-up rejection

HOLMES final specifications

- 32 Channels / ROACH-2 board
- 500 kHz sampling
- 20 ms RT pulses

Next steps

- → The determination of the electron neutrino mass with ¹⁶³Ho is complementary to the determination of the neutrino mass with Tritium
- \rightarrow spectral shape measurement is needed for theoreticians to refine the EC model of 163 Ho
- → HOLMES has already demonstrated:
- production and purification of large amount of ¹⁶³Ho sample
- operation of large arrays of high resolution low temperature detector
- first low energy background studies
- → HOLMES detector modules will be soon tested for ¹⁶³Ho enclosure aiming at 300 Bq

Thank you for you patience and attention ;)