Results from X-Ray microcalorimeter arrays based on Thermal MKIDs (TKIDs)

Miguel Daal University of California, Santa Barbara

LTD-18 – Milan, Italy – July 22, 2019

Technology & Funding Motivations

- Space-Borne For *Physics of the Cosmos* NASA needs:
 - Priority #1: fast, low noise, megapixel X-ray imaging arrays with moderate resolution
 - Priority #2: large-format, high-spectral-resolution, small-pixel X-ray focal plane arrays
- Ground-Borne Materials analysis:
 - Synchrotron beam-line studies and X-ray microanalysis where large solid angle is desired
 - Imaging extended x-ray sources with high temporal and spectral resolution

Funded Objectives

NASA APRA Funding for:

- X-Ray detector array, > 1,000 pixels
- Multiplex factor, 1 signal line : \geq 250 pixels
- Soft x-rays, 0.2 10 keV
- Moderate energy resolution, ΔE ≤ 5 eV @ 6 keV
- Moderate fill factor, $\geq 75\%$
- Pixel quantum efficiency (QE), ≥ 95% @ 6 keV
- Microsecond photon arrival time resolution

Resources

- 1 Full-time postdoc
- UCSB Nanofab
- Dedicated UHV sputter system
- Two Dilution Fridges

Approach

- Use microcalorimeter format to couple an x-ray absorber to an MKID.
- X-rays warm up absorber which warms up MKID.
- Use temperature rise to measure x-ray energy.

Progress so far...

- 75 eV at 5.9keV
 - Ulbricht *et al.*, APL, 106, 251103, 2015
- Long rise time, ≈45 µs, ⇒ degraded energy resolution
 - Probably due to perforated absorbers
 - Membrane conductance too low giving $\approx 500 \ \mu s$ fall times \Rightarrow low count rate
- Resonator phase sensitivity (d θ per dT) was too high resulting in easy saturation
- 2D format did not provide path for high fill factor and rapid absorber thermalization
- ${\rm TiN}_{\rm x}$ or ${\rm WSi}_{\rm x}$ sensor have large impact on total heat capacity

- : TiN_x or WSi_x
- Si₃N₄ (etched with XeF₂)
- 🛯 : Ta absorber
- : Nb feedline & GND plane

100 µm

Next steps toward funded objectives

- Thick, cantilevered (3D) absorbers
 - Faster thermalization
 - X-ray stopping power
 - Admits high fill factor
- Hybrid resonators
 - Disentangle phase sensitivity, f_0 & Qc control, heat capacity, and readout power

5.00 kV 3.0 6500x SE 7.4

- Suppress TLS noise using large capacitor and high readout power
 - Go to ~20x smaller pixels later

Resonator Design

- Wide inductor for high current operation
- Low T_c, High L_{Kin} 'Sensor element'
 - Hafnium
- High T_c, Low L_{Kin} ground, capacitor, inductor, feedline
 - Niobium
- Tapers and Fillets to control current density
- Q_c controlled by distance to feedline
- f_0 controlled by inductor length
 - Capacitor geometry/TLS-noise fixed across array
- Heat capacity of membrane + inductor fixed across array

MKIDs read out surface impedance changes

Absorber Design 1

- Eddy currents must not diminish Q_i
 - Use superconductor
 - Possibly use normal metal top layer for better thermal conductivity

Q with 40 μ m absorber, 4.2 μ m above inductor, Qc ≈ 42000, $f_0 \approx 3.5$ GHz

	Qi
Ta Absorber	>106
Au Absorber, (2e-9 Ω∙cm)	50e3
Ta then Au (5 µm separation)	340e3

Absorber Design 2

- Need fast thermalization
 - Thermalization time << membrane cooling time, $\tau \approx C_{tot}/G$
 - How much does qp generation slows thermalization?
 - E.g. ~35 μ s qp lifetime for Ta
- Use 'Stem' size to tune conductance to 'Sensor Element'
- Absorber thickness chosen to achieve QE
 objective

Minimum thickness, <i>t</i> , for 97% x-ray absorption at 6 keV				
Bi	7.41 μm			
Та	6.22 μm			
Au	4.26 μm			
Sn	9.06 µm			

Sensor Element Design

- Estimate $d\theta$ response from absorber dT
 - dT is estimated from absorber heat capacity
- Tune sensor element geometry and thickness based on sensitivity/saturation goals

Assuming Ta absorber: Vol = $t \bullet \pi$ (120/2) ² µm ³ ; Hf Sensor: 120 nm thick; T _{bath} = 70 mK, Q ≈ 40,000						
Sensor	@ 2 keV		@ 10 keV			
length	d <i>f/f</i>	d $ heta$	d <i>f/f</i>	d $ heta$		
2 µm	2.1e-6	18°	2.1e-5	190°		
6 µm	5.7e-6	52°	5.9e-5	545°		
20 µm	1.8e-5	171°	1.9e-4	1780°		

Sensor element and absorber geometry Compute: f_0 , Q @ T_{bath} Using: Sonnet, Z_s(T_{bath}) Compute: $df/f @ T_{bath} + dT$ Using: Sonnet, $Z_s(T_{bath} + dT)$ Compute: $d\theta$ Using: df/f

Phase angle response, d θ

Membrane Design

- Membrane thickness and patterning are used to control conductance
 - Using 250 nm thickness for low ballistic conductance limit

Test Die

- 9 Resonators
- Air bridges
- 3 6 GHz

Current Status:

- Process development and Fab
 - Membranes yield
 - Sensor to inductor contact
 - Absorber stress control
 - Absorber phase control
 - Cantilever cleaning
- Cooling down first devices!!
 - Seeing resonances need to improve Q_i

- END -

Readout of Surface Impedance

- Resonators shunt-coupled to feedline
- Surface impedances are proportional to the circuit impedances
 - $R = g \bullet R_S$
 - $L_{Kin} = g \bullet L_S = \alpha \bullet L$
 - $L = L_{Kin} + L_{Mag}$

$$\delta S_{21} = \frac{\delta V_{\text{out}}}{V_{\text{in}}} = \alpha \frac{Q^2}{Q_c} \left[\frac{\delta R_s}{X_s} + j \frac{\delta L_s}{L_s} \right]$$

• Only $d\theta$ is measured

$$d\theta^{\circ} = \frac{\delta f}{f} \frac{360}{\pi}$$

