Commercially Fabricated Antenna-Coupled Transition Edge Sensor Bolometer Detectors for Next Generation Cosmic Microwave Polarimetry Experiment

Aritoki Suzuki¹, Nicholas Cothard³, Adrian T. Lee^{1,2}, Mike Niemack³, Christopher Raum², Mario Renzullo⁴, Trevor Sasse², Jason Stevens³, Patrick Truitt⁵, Eve Vavagiakis³, John Vivalda⁴, Benjamin Westbrook², Daniel Yohannes⁴

- 1) Lawrence Berkeley National Laboratory
- 2) University of California, Berkeley
- 3) Cornell University
- 4) SeeQC-HYPRES, Inc.

Precision Cosmology with CMB

- Decades of efforts to characterize Cosmic Microwave Background radiation
 - Temperature anisotropy is characterized to cosmic variance limit ($\theta > \sim 0.1^{\circ}$)
 - Sub-percent constraints on cosmological parameters except for τ (opt. depth to reio.)

CMB Polarization

- Inflation: Large angular scale B-mode polarization pattern in the CMB
- Light relics: History of relativistic particles. Alters CMB's power spectrum
- Lensing: Cross-correlation with DESI, LSST. Σmv

Current Experiments

Current experiments are on sky with ~10,000 detectors per telescope

Chile, Atacama

Atacama Cosmology Telescope

Antarctica

South Pole Telescope

Bender (Wed)

BICEP-2/Keck Array/ BICEP-3/ BICEP Array

Schillaci (Tue), Cukierman (Wed)

- Microfabricated antenna (horn, planar, phased array) coupled detectors
 - Transition Edge Sensor bolometer achieves photon-noise limited performance
- Increase optical throughput to improve sensitivity

Future Experiments

~2011	Stage-2	# of detectors ~1,000
~2017	Stage-3	~10,000
~2020's	Stage-4	~500,000

CMB experiment roadmap

Simons Observatory

- Chile, Atacama
- 80,000 detectors
- 2020 deployment
- McCarrick, Dober (Wed)

• CMB-S4 (Stage-4 CMB experiment)

- South Pole and Chile
- ~500,000 detectors
- Satellite Missions
 - LiteBIRD Sugai (Wed)
 - PICO

Challenge for next generation CMB experiment is understanding systematics even better and production throughput (especially for ground-based experiments)

Detector Production for Next Gen Experiment

Assume...

- 500 wafers in 2 years
- 2~3 sites fabricate detectors
- 75% yield...
- 40 fabrication weeks/year

Rate \rightarrow 10 wafers per 3 weeks per site

Commercial LEKID horn coupled detector fabricated by STAR Cryoelectronics (McCarrick et al 2014, arXiv:1407.7749)

Next generation ground based CMB experiment (CMB-S4) need to fabricate ~500 detector wafers → Orders of magnitude increase in wafer count from current experiments

Excitement in quantum computing expanded superconducting microfabrication capability in industry

Can we merge industry's know-how on mass production and quality control and our knowledge of LTD to tackle production throughput challenge?

Commercially Fabricated TES bolometers

Strong support on knowledge/technology transfer from academia to industry - SBIR

- We worked with companies that specializes in superconducting microfabrication С
 - HYPRES/SeeQC and STAR Cryoelectronics 0
- Successfully fabricated sinuous antenna coupled transition edge sensor detectors with \mathbf{O} both companies 7

My experience with HYPRES/SeeQC Inc.

Stepper lithography machine operated by dedicated engineer

High throughput e-beam evaporator

XeF2 machine Installed at SeeQC

- PhD Engineers that speak common superconducting fabrication language
- Controlled environment
- High throughput industrial equipment
- Many materials and steps are similar. 6-inch process.
- Some differences: Installed XeF2 machine and special alloy (AIMn)
- Exchanged detailed documentation and specification sheet

R&D Approach

• Try out many different designs on one wafer

- Converge on design quickly
- Examples:
 - Bolometer leg length sweep
 - Optical chip with different band pass filters

Transition Edge Sensor Bolometer Performance

TES film development

- Installed aluminum-manganese targets at SeeQC
- Dedicated a sputtering chamber
- Found correct manganese concentration and annealing temperature for Tc = 165 mK
- Bolometer leg length development
 - Saturation power (P_{sat}) = 0.5 pW ~ 5.5 pW
 - Good range for CMB experiments

10

TES Bolometers for Multiple Readout Types

HYPRES/SeeQC detectors coupled to three readout technologies used by CMB experiments

Optical Performance

Spectra

Dual frequency band, dual polarization pixel

Efficiency from outside of the dewar to bolometer

- 90 GHz band: ~70%
- 150 GHz band: ~50%

Increased optical efficiency by using silicon-rich silicon nitride film

Deployable Detector Array Fabrication

- We successfully fabricated detector array for Simons Observatory (SO) receiver
 - Fully SO compatible design. 90/150 GHz dual band dual polarized detector array
- Deploy HYPRES/SeeQC array as a demo once the array is fully vetted
 - Great way to raise Technology Readiness Level (TRL) of this approach

Batch Fabrication Demonstration

- Fabricated 10 wafer batch in 15 working days (3 weeks)
 - Achieved target, but want to go faster
- 15 working days include making monitor samples, metrology and documentation
- We identified bottle neck during the process upgrading equipment to fabricate faster

Metrology: Uniformity, Repeatability, Yield

Stress

Low stress PECVD SiNx (target 10,000 A)													
Wafer-ID Top		Mide	dle Bott	om Lef	t Right	Monito	r Average	% stdev	Dev Target 9	6			
VC	8-Batch0.01	atch0.01 9935		9964	10024	9923	10021	9730	9973.4	0.47%	-0.26	6	
VC	/08-Batch0.02 9865		9961	9938	9862	9931	9791	9911.4	0.46%	-0.88	6		
V08-Batch0.03 10038		38	10167	10053	9994	10069	10016	10064.2	0.63%	0.64	2		
VC	8-Batch0.04	999	1	9969	10082	9946	10057	10184	10009	0.58%	0.0	9	
VC	8-Batch0.05	987	0	9880	9943	9836	9913	9992	9888.4	0.42%	-1.11	6	
V	Nb ground (target 3,000 A)												
V	Wafer-ID)	То	р	Middle	Bottom	Left	Right	Monitor	Averag	e % stdev	SheetR	St
	V08-Batch0	.01	3227	3	209	3336	3288	3195	3137	3251	1.82%	0.57	-285
	V08-Batch0	.02	3188	3	197	3291	3278	3185	3137	3227.8	1.62%	0.57	-285
vu	V08-Batch0	.03	3222	3	211	3262	3172	3303	3141	3218.5	1.56%	0.57	-356
	V08-Batch0	.04	3237	3	170	3244	3277	3166	3141	3205.83	3 1.52%	0.57	-361
	V08-Batch0	.05	3026	2	992	20/19	3064	2969	3028	3021.83	3 1.29%	0.6	-376
	V08-Batch0	.0	AlMn (target				get 5,000 A)			3032.66	7 1.46%	0.6	-354
	V08-Batch0	.01	Wafe	er-ID	Thickness	SheetR	Anneal ten	Stress	3093	3087.5	1.30%	0.6	-342
	V08-Batch0	.08	/08-Bat	tch0.01	483	7 0.10	5 215		3093	3081.5	1.30%	0.6	-308
	V08-Batch0	.09	/08-Bat	tch0.02	483	7 0.10	5 215	310	3095	3159.16	7 1.62%	0.58	-366
	V08-Batch0	.10	/08-Bat	tch0.03	485	4 0.10	1 214	321	3095	3146	1.28%	0.58	-328
1		١	/08-Bat	tch0.04	485	4 0.10	1 214	331					
		١	/08-Bat	tch0.05	500	3 0.	1 216						
		١	/08-Bat	tch0.06	500	3 0.	1 216						
		١	/08-Bat	tch0.07	492	4 0.	1 215	330					
		١	/08-Bat	tch0.08	492	4 0.	1 215	326					
		١	/08-Bat	tch0.09	483	3 0.10	3 215						
		\	/08-Bat	tch0.10	483	3 0.10	3 215						

DC probe (room temp) result

Yield = 96.2%
1
2
3
4
5
6
7
8
9
10
10

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1</th

Metrology: Absolute thickness, uniformity & repeatability of films

Automated DC probing station

- 95% average warm DC yield automated probe station
- Film property
 - Silicon nitride within 1% of target thickness, < 1% uniformity
 - Niobium within 8% of target thickness, < 1.8% uniformity
 - AlMn within 3% of target thickness, sheet resistance vary by < 5%
- Next step is to cryogenically test detector arrays (so far tests were done at pixel level)

Summary

The CMB polarization measurement is entering very exciting era. Challenges for next generation experiments are: production throughput and understanding systematics

We have fabricated antenna-coupled TES detector array to show that partnering with industry is a great way to tackle production throughput challenge

Next:

- Test detector arrays in cryogenic environment
- Expand to low (30/40 GHz) and high (220/280 GHz) frequency range
- Explore detectors with different optical coupling
- Explore to see if we can apply SeeQC's capability to other LTD needs