

Multi-isotope Experimental Validation of Calorimetric Electron Capture Spectral Theory

Katrina E. Koehler¹, Michael A. Famiano², Christopher J. Fontes¹, Michael W. Rabin¹, Dan R. Schmidt³, Chandler M. Smith¹, Aidan D. Tollefson¹, Joel N. Ullom³, Michael D. Yoho¹, Mark P. Croce¹ ¹Los Alamos National Laboratory ²Western Michigan University ³National Institute of Standards and Technology LA-UR-19-26573

Motivation

Electron capture is a 2-body reaction. A measure of the excited atom's energy is a measure of the neutrino's energy.

¹⁶³Ho
$$\rightarrow$$
 ¹⁶³Dy^{*} + $\nu_e \rightarrow$ ¹⁶³Dy + ν_e + (electrons, photons, phonons)
 $\Gamma_{atom} = Q - E_{\nu}$

ν_e e √ x-ray

The advantage of a calorimetric measurement (conceptual drawing at left): no need to know fluorescent yield, because all atomic decay energy is thermalized and measured as heat. Microcalorimeter Transition Edge Sensors (right) provide the required energy resolution (< 10eV FWHM at 2 keV) for a kinematic neutrino mass measurement.

The endpoint region is most sensitive to the neutrino mass. Need a validated theory to extract neutrino mass without systematic uncertainty!

(Left) Theoretically calculated spectrum with 10⁷ decays (red) with current ¹⁶³Ho data (LANL, black. ECHo, blue). (Right) Conceptual drawing of the spectral endpoint, showing sensitivity to the kinematic neutrino mass.

¹⁶³Ho Peak Ratios are not experimentally well-constrained.

Theoretical calculations of the peak ratios vary significantly based on atomic structure code generating orbital wave functions AND order of antisymmetrization.

Validating a theory...

- Comparing theoretical predictions on features far from the end point
- Using theory on other isotopes

Modern ⁵⁵Fe Peak Ratios agree best with EC-capture calculations. Better energy resolution → Better theoretical evaluations L1/K and L2/K instead of L/K

Comparisons of Theory and Experimental ¹⁹³Pt Ratios

048-	¹⁹³ Pt M/L Peak Ratio		L2/L1		M1/L1		M2/L1	Year	Reference	L partial half-life	Q value	¹⁹³ Pt Source	Notes
0.40	LANL (2018)	0.070 -		0.44 -		0.040 -	LANL (2018)	1953	Swan, et al. [207]	1 hour – 74 days		Х	^{193m} Pt was the object of this research not ¹⁹³ Pt
0.46 -		0.070						1956	Naumann [208]	< 100 years		Y ²	
0.44 -		0.065 -		0.42	•LANL (2018)	0.035 -		1969	Hopke and Naumann [209]	620 ± 250 years	$60.8 \pm 3 \text{ keV}$	Y	This reference tells us to disregard values from [210]
			DANL (2019)				\blacklozenge LANL (2019)	1971	Hopke and Naumann [211]	$94\pm30~{\rm years}$		Y	Half-life calculation dependent on 60.8 ± 3 keV Q-value
0.42 -		0.060 -	▼ O(1)	0.40 -	I	0.030 -		1971	Ravn and Bogeholt [205]	$73\pm9\mathrm{years}$		Y	
0.40 -	Ravn and Bogeholt (1971)	0.055 -		0.38 -		0.025		1983	Jonson, et al. [212]		56.6 ± 0.3 keV	Z ³	This reference quotes 56.6 ± 0.3 keV in the text and 56.3 ± 0.3 keV in the abstract
	•					0.023 -		1988	Babu and Rao [213]		$54.5\pm4.3\mathrm{keV}$	Y	This work reanalyzes data from [209]
0.38 -	Robinson (1965)	0.050 -		0.36 -	▼ O(1)	0.020 -		¹ Platin ²¹⁹² Pt- ³ Platin	um foils (0.012% ¹⁹⁰ Pt, 0.8% -enriched sample irradiated at	¹⁹² Pt, 32.8% ¹⁹⁴ P t Materials Testing	t, 33.7% ¹⁹⁵ Pt, 25. Reactor at Arco, 1 SOLDE facilit	4% ¹⁹⁶ Pt, 7.2 daho for 6 m v at CFR N	% ¹⁹⁸ Pt) subjected to gamma irradiation. onths
0.36 -	LANL (2019)	0.045 -			$\mathbf{\nabla}\mathbf{O}(0\mathbf{U})$			Q V	alue of ¹⁹³ Pt EC m	nust be bett	er known.	Varying	Q by 10% can change
0.34 -	$\mathbf{O}(0)$	0.040 -	•LANL (2018)	0.34 -	LANL (2019)	0.015 -		a th	neoretical calculat	ion by 6%.		, с	,
0.32 -													
	2018 2019	$\beta_1 \gamma$											L1

2018					1			
2019				1	1		, –	
	$\Gamma_{\mathcal{O}}$			i	1		t L	
				i i			ط	
		L D t		1				
			-				1	
					1	L2		
					1	4		

 10^{5}

 $\operatorname{ind}^{10^4}$

Los Alamos National Laboratory

