Developing AlMn films for Argonne TES fabrication

E.M. Vavagiakis¹, V.G. Yefremenko², C.L. Chang², N.F. Cothard³, J.R. Stevens¹, G. Wang², J. Zhang², M.D. Niemack¹ ¹Department of Physics, Cornell University, Ithaca, NY, USA 14853, ²Argonne National Laboratory, ³Department of Applied Physics, Cornell University, Ithaca, NY, USA 14853

Argonne polarization-sensitive, multichroic array

CMB-S4: Improved measurements for cosmology via cosmic microwave background (CMB) polarization, SZ effects and galaxy clusters, to constrain dark energy, neutrino physics, signatures of inflation

Left: Raytrace of a CMB-S4 19 optics tube 6-m telescope design [1] Right: Preliminary design for a 19 optics tube cryostat [1,2]

Will use large arrays of transition edge sensor (TES) bolometers coupled to Superconducting Quantum Interference Device (SQUID)-based readout systems. AIMn TESes: simple single layer film manufacturing, highly uniform arrays over large wafers [1]

Left: Fabricated SPT-3G multichroic pixel array [5] Right: TES geometry can be tuned for desired R_N

We are developing and testing the fabrication process for Argonne AlMn TESes to be used in next generation CMB experiments.

The targets are a critical temperature of 150-200 mK and a normal resistance of 10-20 mOhms.

X-section of AlMn/Ti/Au multilayer structure edge after lift-off process. Direct contact of Al, Au (red arrow) causes variation of SC properties.

Deployed SPT-3G array: $T_c = 420 \text{ mK}$, $R_N = 2 \Omega$. To use this technology for CMB-S4: T_c ~150-200 mK (decreased T_{bath} reduces thermal fluctuation noise), $R_N \sim 10-20 \text{ m}\Omega$ (for TDM or uMUX readout). AIMn_{2000ppm} with different thicknesses tested. Repeatable result: AIMn_{2000ppm} 200nm/Ti15nm/ Au15nm, modified geometry to get $R_N \sim 20m\Omega$, Pb bling-TES lateral proximity tested.

Fabrication process (deposition layers, geometry, baking time and temp., etc.) affect TES T_C , R_N [3]. Argonne devices fabricated in various ways to compare designs and methods.

Right: Interior of the Bluefors LD dilution refrigerator test bed at Cornell, with close-up of 4-lead board bonded to Argonne samples. Left: T_C measurement and variation with excitation current

Measured the critical temperature and device parameters of Argonne samples and TESes at Cornell, using 4-lead measurements and SQUID-based TDM readout. T_c was found to vary with baking temperature, materials, and design. Optimization and testing of the Argonne devices for CMB-S4 is ongoing.

camera. Superconductor Science and Technology, 28(9), [094002]. DOI:10.1088/0953-2048/28/9/094002