Development of multi-layer anti-reflection structures for millimeter-wave silicon optics using deep reactive ion etching process

- ^{1.} Takashi Hasebe, Tasuku Hayashi, Hayato Takakura, Yutaro Sekimoto, Kumi Ishikawa, Yoshinori Shohmitsu,
- ^{2.} Kazuhusa Noda, Satoshi Saeki, ^{3.} Yuichiro Ezoe, ^{4.} Tom Nitta 1. Japan Aerospace Exploration Agency 2. Oshima Prototype Engineering Co. 3. Tokyo Metropolitan University 4. University of Tsukuba

Introduction

To show the technical feasibility of a high-frequency and broadband anti-reflection(AR) coating for silicon optics in millimeter wavelengths, we fabricated a prototype of the 4-layers sub-wavelength structures (SWS) by using a combination of a deep reactive ion etching (DRIE) and dicing processes.

Also, we fabricated the 3-layer SWS using a multi-layer DRIE technique.

SWS Fabrication Using Multi-layer DRIE

Fabrication method

SWS Fabrication Using Combination of DRIE and Dicing Processes

Fabrication method

Fig. 1 Fabrication method for 4-layers SWS with the combined process.

Fig. 6 Fabrication method for 3-layers SWS with the multi-layer DRIE.

Prototype fabrication

Prototype fabrication

Fig. 2 Cross-section of the first layer of the 4-layers SWS processed with DRIE.

Fig. 3 Cross-section of the prototype 4layers SWS with the combined process.

Design

Prototype

Frequency [GHz]

Simulation

Table 1 Width and depth of each layer of the 4-layers SWS used in the HFSS simulations.

	w 1	w 2	w 3	w 4	d 1	d 2	d 3	d 4
Design [µm]	13	31	60	100	616	517	389	219
\mathbf{D} () \mathbf{L}]	7	11	(1	104	500	400	202	202

200 250 Number of DRIE cycles

Fig. 6 Relation between the etched depth and the number of DRIE cycles for each layer.

Fig. 7 Cross-section of the protptype 3layers SWS with the multi-layer DRIE.

Simulation

Table 2 Width and depth of each layer of the 3-layers SWS used in the HFSS simulations.

	w 1	w 2	w 3	d 1	d 2	d 3
Design [µm]	15	60	100	414	324	192
Protptype [µm]	25	63	104	398	341	180

4 K. The designed and prototype structures show the averaged reflectances of 1.6 % and 5.2 % at 150 - 450 GHz, respectively.

Conclusions

We fabricated the prototype 4-layers SWS with the combined process and 3-layer SWS with the multi-layer DRIE technique. The 3-layer and 4-layer prototypes show the expected averaged reflectances of 5.2 % at 150 - 450 GHz and 3.7 % at 100 - 450 GHz, while the designed structures show 1.6 % and 2.0 %, respectively.

Acknowledgements

We thank Makoto Mita for various advice for the multi-layer DRIE methods. This work was supported by MEXT KAKENHI Grant Number 17H01115.

Fig. 4 4-layers SWS models used in the HFSS simulations.

Fig. 5 Expected reflectances of the 4-layers SWSs at 4 K. The designed and prototype structures show the averaged reflectances of 2.0 % and 3.7 % at 100 - 450 GHz, respectively.

250

350