A Novel Production Method of Millimeter-wave Absorber with a 3D-printed Mold

S. Adachi, F. Kanno^A, T. Okada^A, M. Hattori^A, K. Kiuchi^B, O. Tajima (Kyoto Univ., ^ATohoku Univ., ^BThe Univ. of Tokyo)

Motivation

- To suppress "Stray Light" in radio telescopes
- **Requirements** for the absorber used in <u>a cryogenic system</u>
 - High absorption rate \bullet
 - Low reflectance on the surface ullet
 - Good performance in cryogenic condition
 - cold resistance
 - thermal conductivity
 - Optional: Adhesion performance on metal •

New Production Method

We propose a new production method of an absorber with periodical pyramid surface shaped by a 3D-printed mold

t0.5 mm

Decrease reflectance on the surface

CM

t

3D-Printed Mold

- Make pyramid surface
- Sufficient thin & less absorptive to ignore its optics effect
- Does not need to be removed

Absorptive material

- Actual absorber
- Pyramid shaped

Prototyping

3D-printed mold

PolyJet 3D-printer of Stratasys Japan Ltd. **strata**sys

- Good fineness: ~30 µm ② Degassing (~15min)
- Quick fabrication due to its layer-by-layer fab. (like ink-jet paper-printing)
- Less absorptive: ~50% wt t10mm @ 100 GHz

v 89

In Vacuum Desiccator

3 mm

Advantages:

1. Quick R&D / mold fabrication

- Fabrication of the 3D printed mold is short period from design to fabrication. (1 fab. iteration ~ one week)
- Easy to make various shape absorbers to adjust a mounting point in the telescope.

2. Ability to select the absorptive material

By using a material suitable in cryogenic system, the absorber gets good cryogenic performance.

10cmx10cm sample (mold only)

③ Curing (~24h)

Absorptive material

Stycast2850FT

- Good adhesive performance in low temperature (CTE agreement with aluminum)
- Good thermal conductivity (~64mW/mK @ 4K)

Reflectivity Measurement

Cryogenic Test

3 times liquid N₂ dunking A 10x10cm prototype is adhered to an aluminum plate (t1 mm)

- Incident angle : 45°
- Frequency range : 60~170 GHz by using a FTS (Fourier Transfer Spectrometer)
- **Reflectance < ~1%** [@ Frequency > 100 GHz] 1/10 better than the flat Stycast2850FT plate (~O(10%)) \bullet

- There is no crack.
- **Does not peeled off the** aluminum plate

Conclusion

The new absorber production method by 3D-printed mold has good optical performance & cryogenic performance. Its advantages are quick R&D and the selectable absorptive material, which make easy to optimize the absorber for each application.

July 2019 @ Milano

LTD18

Supported by JSPS KAKENHI JP18J01039/JP17H06134