MOCCA: a 4k-pixel molecule camera for the position and energy resolved detection of neutral molecular fragments at the Cryogenic Storage Ring CSR

Dennis Schulz¹, Steffen Allgeier¹, Christian Enss¹, Andreas Fleischmann¹, Lisa Gamer¹, Loredana Gastaldo¹, Julia Hauer¹, Sebastian Kempf¹, Oldřich Novotný², Sebastian Spaniol² and Andreas Wolf²

¹Kirchhoff-Institute for Physics, Heidelberg University, ²Max-Planck-Institute for Nuclear Physics, Heidelberg

Motivation

• existence of organic molecules in interstellar clouds surprising due to their low densities and temperatures • important processes in those clouds: electron-ion recombinations, e.g. dissociative recombination (DR): $AB^+ + e^- \rightarrow A + B$ • experimental investigation of DR in the Cryogenic Storage Ring (CSR) at MPI-K in HD

Cryogenic Storage Ring

• T < 10 K, $p \sim 6 \times 10^{-15}$ mbar • electrostatic storage • comparably small kinetic energies: 20-300 keV

Detector Requirements

• large area, Ø 4-10 cm operation in cryogenic environment

position sensitivity

 high energy resolution to identify masses high quantum efficiency, no dead layer ability to detect neutral particles! Low Temperature Detectors

Metallic Magnetic Calorimeters (MMCs)

aluminum

photoresis

MOCCA: A 4k-Pixel Molecule Camera

The HYDRA principle

lon injection

Readout scheme

pickup coils

Measurements with massive particles

backscattering of fragments leads to additional low-enery-tails

Neutral molecular fragments hitting absorber made of ...

Measurements with photons

Cleanroom fabrication

Single pulses with different risetimes:

0.10

Al hard mask

etched hole

Au etch stop

breaking edge of wafer

----- no crosstalk visible between column and row!

Spectrum of a single sensor, measured by small test MOCCA:

2.5

2.0

[... 1.5 [a^{.n}

1.0

-0.05

0.00

0.05

time [ms]

- MOCCA cooled by dry ³He/⁴He dilution refrigerator (BlueFors, FI)
- CSR shares its isolation vacuum with cryostat • separate beam tube vacuum (~6x10⁻¹⁵mbar)
- cooled via detector platform attached to mixing chamber of cryostat
- MOCCA inside beam tube \rightarrow cold feedthrough of MOCCA wiring
- bellows with intermediate heatsinking to minimize heat leak at the 4K-10mK-vacuum -separation
- electron optics to extract secondary kickedout electrons for nanoseconds timing to determine longitudinal component of the fragments' velocities

Electron optics

• Mirror and accelerating mesh made of galvanized gold in the cleanroom to achieve maximum transparency • in-house fabrication in Heidelberg, 700µmx700µm cells on three-inch wafer

>97% transparency

