Performance of a Low-parasitic Frequency Domain Multiplexing Readout

Amy E. Lowitz¹, Amy N. Bender², P. Barry², T. Cecil², C. Chang^{1,2}, R. Divan², M. Dobbs³, A. Gilbert³, S. Kuhlmann², W McGill M. Lisovenko², J. Montgomery³, V. Novosad², S. Padin^{1,2}, J. Pearson², G. Wang², V. Yefremenko², J. Zhang² ¹University of Chicago, ²Argonne National Laboratory, ³McGill University

Introduction

- Frequency Domain Multiplexing (fMux) is a TES readout technique used on current CMB experiments
- •Parasitic impedance in fMux is a dominant source of crosstalk and limits operation of lower-R_n bolometers

•We have designed and implemented a readout with the SQUID next to the LC • Reduced wiring length \rightarrow reduced parasitics

•Here we show performance of the prototype system alongside SPT-3G readout hardware for comparison

- **drop-in replacement** for SPT-3G-style LC boards in any of the SPT-3G testbeds or, in principle, the telescope itself.

Performance

dissipation required for operation at scale with a sorption refrigerator

Argonne

THE UNIVERSITY OF CHICAGO

Key Benefits

The T > Tc **noise performance** of the prototype system is comparable to the performance of the standard SPT-3G hardware.

The median **parasitic resistance** of the prototype is half that of 3G DfMux hardware. Vertical lines indicate the medians.

- Decreased stray resistance enables **operation of** lower-R_n bolometers, to better optimize noise.
 - **Reduces NEP**_{readout} because the bolometers can be operated with lower V_{bias}. Optimal R for a typical fMux is ~ 0.5 -1.0 Ohms.
- Reduced crosstalk enables denser packing of bolometers in frequency space
 - This allows for higher multiplexing factors and improved scalability.
- Leverages much of the existing DfMux architecture, which has proven on-sky performance
- Drop-in replacement for 3G-style LC boards

Schematic of the DfMux readout. The wires highlighted in red run

Resistance vs Power curves for three representative bolometers. These curves have been corrected to remove the parasitic resistance.

V-phi curve for a representative NIST SA13 SQUID at three temperatures. We see slight improvement in peak-to-peak and

transimpedance at lower temps. output] dinp at א< [24] Offset " 257 mK 2.4 K

