

Energy consumption, conversion, and transfer in nanometric Field-Effect-Transistors (FET) used in readout electronics at cryogenic temperatures

O. López-López¹, I. Martínez¹, A. Cabrera¹, E. A. Gutiérrez-D.¹, D. Ferrusca¹, D. Durini¹, F.J. De la Hidalga-W¹, M. Velazquez¹, O. Huerta¹, A. Kruth², C. Degenhardt², A. Artanov², S. van Waasen²

¹ Instituto Nacional de Astrofísica, Óptica y Electrónica (INAOE), Puebla, Mexico ² Central Institute of Engineering, Electronics and Analytics ZEA-2 - Electronic Systems, Forschungszentrum Jülich, Jülich, Germany

1. Introduction

Cryogenic operation Of Complementary-Metal-Oxide-Semiconductor (CMOS) Field-Effect-Transistor (FET) technologies of crucial is relevance for quantum computing. A commercial high-K metal-gate, 14 nm FinFet technology node is used as a test vehicle. Its nominal operation voltage is of 0.9 V, and the effective width over length geometry is W/L = 120 nm / 20 nm.

Fig. 2 Temperature-time profile (T-t) of the closedcycle cryostat featuring three different cooling plates held at different distances from the cold finger.

2. Results and discussion

Inner energy of the FET device decreases with the reduction of the temperature, which leads to an increase of the threshold voltage V_{T} .

There is a monotonic increase of energy consumption with Vd @3.1K but a non-monotonic function in the whole 300K - 3.1K temperature range.

Id and gm normalized for 0.1 and 0.4V show that this technology represents an excellent option for low-voltage cryogenic systems.

Measured and normalized Id current increase, and b) Fig. 4 a) percentage of increase of the transconductance for 0.1 and 0.4 V gate overdrive voltage.

The electrical performance of the *p*-type FinFet shows a regular

Fig. 6 a) Measured energy consumption at T=3.1 K as a function of V_d , with $V_q=0.8$ V; b) Measured energy consumption as a function of temperature for $V_d = 0.1$ V, at $V_a=0.8$ V.

Kink effect happens at the condition where the holes generated by impact ionization start changing the bulk potential which results in a decrease of the V_T voltage, and an increase of Id.

3. Conclusions

behavior.

The 14 nm FinFet technology works well down to 3.1 K and has a superior energy efficiency, which proves this technology is an appropriate candidate for quantum computing applications.

References

1. D. Loss, P. DiVincenzo, Phys. Rev. A, Vol. 57, 120 (1997), DOI: 10.1103/PhysRevA.57.120 2. M. Kim, Y. Jeon, Y. Kim, IEEE T. on Nanotech, 14, 633-637, (2015), DOI: 10.1109/TNANO.2015.2427453 3. H.J. Raleva, K., Vasileska, D., Hossain, A. et al. J Comput Electron (2012) 11: 106, DOI:10.1007/s10825-012-0384-0 4. J. Roig, E. Stefanov, F. Morancho, IEEE Trans. On Elect. Dev., 53, (2006), DOI: 10.1109/TED.2006.876277.

Acknowledgements: This work was suported by the Mexican Council for Science and Technology (CONACYT- Mexico)