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INTRODUCTION AND MOTIVATION

DARK MATTER RADIC e Growing interest in searching for wave
dark matter candidates due to a lack of
KHz_ MHz GHz THz freq WIMP detection or signatures of
I supersymmetry.

N 7~ e The Dark Matter Radio (DM Radio) will
% search for sub-eV axion and hidden

AM/FM/DM photon dark matter over a wide mass
range.
slitted
esonaor sheatn YD e DM Radio detector consists of a
¢ ¢ superconducting, tunable lumped-
R [/ Lo /] element LC resonator with SQUID-based
c=— L readout.
I-input
e DM Radio Pathfinder has the ability to

detect hidden photon dark matter and
informs scaling to larger experiments.

WAVE DARK MATTER CANDIDATES

Candidate Spin Production Mechanism Coupling

QCD Axion/ALP | O (pseudoscalar) | Misalignment mechanism

Inverse Primakoff effect

requires light fields to be bosonic.

e Oscillation frequency determined by

rest mass (hf=mc?) plus small
contribution from kinetic energy.

e Kinetic energy from virialized dark matter

sets f/Af ~ 106, field is coherent within
detector!

Number per deBroglie Volume

e Hidden photons/axions act an oscillating
background current density sourcing a
real, oscillating electromagnetic field.

f~25MHz x (m/10"%eV)
teoherence == 0.45 x (107% eV /m)

Acoherence = 100km x (107 %eV /m)
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_ 3 wave-like
e Local dark matter density (~0.4 GeV/cm~) (axions, hidden photons)
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FIXED-FREQUENCY RESONATOR

1-turn coil couples
to dc SQUID input e Single-frequency test resonator with

sensitivity to hidden photon dark
matter (100 mL volume)

40-turn NDbTi
inductor —
on PTFE form 7

IIIII

e No excess power observed in 5.6 hr
search integration

Superconducting shield
blocks electromagnetic
background, but is easily ™
penetrated by
hidden photons/axions

HIDDEN PHOTONS
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DETECTION TECHNIQUE

Superconducting sheath
(like a hollow donut)
inside shield

top-down
cross section /¢

AXIONS >
Effective axion-
/ induced current

Axions interact with
DC magnetic
field, generating
effective current
which produces
oscillating
magnetic field

top-down
cross section

Meissner effect
generates screening
currents, interrupted by
vertical slit and sensed
with SQUID

Solenoidal inductor

placed in center of
sheath
P %
L

LC resonator couples to
| magnetic field, rings up
- | and enhances signal at

| \% resonant frequency

Nb-coated _ _ _ o _
sapphire e First dlre_ct detection limits on hidden
capacitor o photons in the neV mass range!
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f0=790.036 kHz, Q=200,000

e Data
— Fit

e 670 mL hidden photon detection
volume, will cover 100 kHz - 10 MHz
in full scan
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Power (nA™2/Hz)

4.7 hr
integration

Noise

e Operates in liquid helium, tuning
performed by position of sapphire
dielectric plates
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e Initial Q=200,000, determined by J k
overcoupled SQUID

-100 =75 -50 =25 0 25 50 75 100
Detuning from Center Frequency (Hz)

PROJECTED SENSITIVITY
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1-year scan with dc SQUID
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