Development and testing of the FDM readout of the TES arrays aboard the LSPE/SWIPE balloon-borne experiment

^aINFN Sezione di Pisa, Largo B. Pontecorvo 3, 56127 Pisa, Italy ^bDipartimento di Fisica, Università di Pisa, Largo B. Pontecorvo 3, 56127 Pisa, Italy

THE LSPE/SWIPE EXPERIMENT IN BRIEF

The Large Scale Polarization Explorer¹ (LSPE) is

• a research programme aimed at measuring the **B-mode** polarization of the Cosmic

The **detection chain** of SWIPE is based on Large Area Absorber TES [3], suitable to terminate multi-moded waveguides [4].

- Microwave Background (CMB) at large angular scales, exploiting the reionization peak at multipoles l < 10.
- A sinergy of two experiments: STRIP (ground, Tenerife) and SWIPE (balloon, Arctic night flight).
- See L. Lamagna's poster (this section, Poster ID: **252-165**) [1], and [2].

[a] The SWIPE cryostat rendering showing all the optical elements.
[b] The two curved focal plane frames.
[c] A prototype LC board in the focal plane back-plate.
[d] A Large Area TES produced at INFN-Genova. See B.Siri's poster ID-220-400

- Two orthogonal focal planes (as in Fig. [a] and [b]) host 326 TES.
- TES are distributed among three frequency bands centered respectively at 140 GHz, 220 GHz and 240 GHz.
- The number of optical modes gathered by the optical system goes from 10 to about 20 per detector, going from the lowest to the highest frequency.
- TES readout: Frequency Domain Multiplexing, as described in, e.g., Dobbs et al.
 [5]. See the following block diagram referring to specific SWIPE components.
 - ► Target B-mode sensitivity can be reached with a reduced number of detectors.
 - ⇒ Compliant with the power budged of an Arctic winter balloon flight relying on batteries.
 - \Rightarrow Constraints on **detector multiplexing rate** can be relaxed (16:1).

FREQUENCY DOMAIN MULTIPLEXING - WARM

> The warm section for the SWIPE readout electronics features a custom board whose core is an Altera Cyclone V SoC including an FPGA with 110K logic elements and a dual ARM9 processor. Tone core generation (200 kHz to 1.6 MHz), demodulation and nulling at SQUID input are managed by this subsystem (**×12 boards**). See, e.g. [6]. It exploits mezzanine plug-ins for 16bit DACs & ADCs (LT). > It uses Gbit interface for data communication and CAN & I²C interfaces towards the SQUID control.

FREQUENCY DOMAIN MULTIPLEXING - COLD

The **cold electronics** components are hosted on 8 boomerang-shaped PCBs to be mounted on the back of each quarter of the 2 focal planes. Each PCB hosts 3 readout chains of 18 channels, composed by a C0G/NP0 SMD capacitor and a superconducting inductor in series with each TES. Each chain is readout by a **6-series**

Crate (cyan in the rendering) with ad hoc board thermal sinks.

array SQUID by VTT.

The cold section of the FDM, with the stages at different temperatures.

The Johnson noise of 22 1 Ω resistors windowed by the cold LC filters, observed through the band of the a Magnicon XXF-1 electronics (in OL, and FLL)

LATEST RESULTS and PERSPECTIVES

⇒Warm electronics: functional tests

⇒Future Works

Single tone generation with different algorithms and comparison with the purity of an external generator.

Comb generation in the SWIPE readout frequency range, with a representative spacing of ~70 kHz.

Generation of the 16-tone buffered time-stream by means of multichannel (4x) NCOs.

- COLD, lab test cryostat: assembly of end-toend detection chain representative of SWIPE conditions (connectors, cables, shieldings).
- COLD, lab test cryostat: sensitivity of the detection chain to slowly varying magnetic fields (picture on the right, pair of Helmholtz coils to produce typ. 20 μ T, from few to hundreds Hz).

- WARM: implement the demodulation scheme and test on the full chain.
- End-to-end noise modelling.

alation Ut the second s

Contacts: and rea.tartari@pi.infn.it, giovanni.signorelli@pi.infn.it

LTD18 – Low Temperature Detectors from 22 July 2019 to 26 July 2019 - Milano (Italy)

REFERENCES

[1] L. Lamagna et al., *submitted*, LTD18 Conference Proceedings, 2019.

[2] F. Columbro, E. S. Battistelli, A. Coppolecchia, et al., "The short wavelength instrument for the polarization explorer balloon-borne experiment: Polarization modulation issues", Astron. Nachr. 340, 0004-6337, 2019.

[3] M. Biasotti et al., "Fabrication and test of large area spider-web bolometers for CMB measurements", J. Low Temp. Phys., 2015.

[4] L. Lamagna et al., "Multi-mode coupled focal planes for high precision measurements of large scale CMB polarization", Proceedings of the 2013 International Conference on Electromagnetics in Advanced Applications (ICEAA) IEEE, pp. 1201-1204.

[5] M.A. Dobbs, M. Lueker, K.A. Aird, A.N. Bender et al., "Frequency multiplexed superconducting quantum interference device readout of large bolometer arrays for cosmic microwave background measurements», Rev. Sci. Inst. 83, 7, 0034-6748, 2012.

[6] D. Vaccaro, A.M. Baldini, F. Cei, et al., "The FDM readout for the LSPE/SWIPE TES detectors", Proc. Of SPIE Proc. SPIE 10708, Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy IX, 1070844, 2018.