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* Kinetic Inductance Detector (KID) array self-calibration using in-array KID as calibration source

* Inject monochromatic RF pulse to excite direct quasi-particle (QP) creation and recombination phonon pulse
* Flexible choice of source location as every KID is an isolated calibration source
* Energy resolution, position dependence, QP lifetime, recombination constant
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* Design/fabricated frequency shift <0.07%, allowed 180 KIDs/0.5 GHz [2] ‘\ " \.
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* Expect 10-20 eV energy resolution, assuming L.NA noise-dominated
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Signal generation, readout, and data acquisition Pulse calibration S
* Readout power adjusted to -75 dBm at detector for optimal responsivity e Outer pixel chosen for pulse generation, inner '
* Two data acquisition modes: 4 pixels for phonon pulse detection
1. Noise mode: noise limited by HEMT LNA or device; acquire pulse-free see red/blue circles in top center mask layout
data for noise PSDs and fit pulse template to pulse-free data * Device transmission (dS21) is converted to
2. Pulse mode: Reduce gain on Rx to allow reception of large monochrom- energy absorbed (dE) by
atic RF pulse power and artifacts produced; acquire pulse data for KID qs. — dn =0 dE €super
being pulsed (readout power pair breaking) and for other KIDs (phonons 1 =Q, akdn,=Q, aK V A \ . \ \ \
received through substrate from pulsed KID). Acquire high SNR pulse where K is defined in [4] 0 100 200 300 400 "

templates for pulsed KIDs and other KIDs through trace averaging

* Both modes calibrated so that data sets are placed in “ideal S21 plane,” where
resonances loop along real axis and asymptote to (0,0) toward resonance.

* Use “noise mode” timestream to calculate noise PSD for optimal filter (OF)
* Use “pulse mode” phonon pulse in central KID for OF pulse template
* Standard OF resolution for energy absorbed in QP system:
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