
  

• Kinetic Inductance Detector (KID) array self-calibration using in-array KID as calibration source 
• Inject monochromatic RF pulse to excite direct quasi-particle (QP) creation and recombination phonon pulse
• Flexible choice of source location as every KID is an isolated calibration source
• Energy resolution, position dependence, QP lifetime, recombination constant
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1 mm

80 30-nm Al KIDs 
over 3.05 ~ 3.45 GHz

RF and superconductivity characterization

●  55 mK base temperature data taking
●  95% pixel yield
●  Qi (internal quality factor) ~ 5×105–2×106

●  Mattis-Bardeen fit to temperature data
●  Δ (superconducting bandgap) ~ 0.2 meV
●  α (kinetic inductance fraction) ~ 0.05–0.10

3” x 1 mm Si

300-nm Nb CPW feedline 
ground (crosstalk) shield [1]

χ

Signal generation, readout, and data acquisition
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           Inject 17 dBm 
           10~20 μsec 
on-resonance mono-
chromatic RF pulse

●  Readout power adjusted to -75 dBm at detector for optimal responsivity
●  Two data acquisition modes:
 1. Noise mode: noise limited by HEMT LNA or device; acquire pulse-free 

data for noise PSDs and fit pulse template to pulse-free data
 2. Pulse mode: Reduce gain on Rx to allow reception of large monochrom-

atic RF pulse power and artifacts produced; acquire pulse data for KID 
being pulsed (readout power pair breaking) and for other KIDs (phonons 
received through substrate from pulsed KID). Acquire high SNR pulse 
templates for pulsed KIDs and other KIDs through trace averaging

●  Both modes calibrated so that data sets are placed in “ideal S21 plane,” where 
resonances loop along real axis and asymptote to (0,0) toward resonance.

GPU-based multi-
tone RF readout, 
c.f. poster#49 
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KID-based phonon-mediated particle detector [poster#409]
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●  Design/fabricated frequency shift <0.07%, allowed 180 KIDs/0.5 GHz [2]
●  Expect 10–20 eV energy resolution, assuming LNA noise-dominated 
frequency readout, 102 μsec QP lifetime Al KIDs, ~30% sensitive area,
c.f. [3] for other details

particle detection mode

pulse calibration mode

Pulse calibration
●  Outer pixel chosen for pulse generation, inner 
 4 pixels for phonon pulse detection 
 see red/blue circles in top center mask layout 

●  Device transmission (dS21) is converted to 
 energy absorbed (dE) by

 

 , where κ is defined in [4]
●  Use “noise mode” timestream to calculate noise PSD for optimal filter (OF) 
●  Use “pulse mode” phonon pulse in central KID for OF pulse template 
●  Standard OF resolution for energy absorbed in QP system: 

 

●  For O(102)-KIDs, position-resolving detector,                                , ηph~0.2
 observed from detector of similar coverage, e.g. SuperCDMS SNOLAB  

●  For threshold-optimized, single-KID detector,  
●  From on-KID resonance pulsing, directly create QP and lifetime τqp ~ 23 μsec  

dS21=Q r ακdnqp=Q r ακ
dE ϵsuper
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σqp∼12.6  eV

τpulse ~ 120 μsec
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