"Noise Model of cryogenic High Electron Mobility Transistor, Low threshold and high discrimination Ge cryogenic detector for Coherent Elastic Neutrino Nucleus Scattering and low mass Dark Matter"

A. Juillard1, J. Billard1, D. Chaize1, J-B Filipin1, D. Misia1, L. Vagneron1, Q. Dong2, A. Cavanna2, C. Ulysse2, Y. Jin2, X. de la Broise3, A. Boumab3, C. Nones3, A. Phipps4

1 Univ Lyon, Université Lyon 1, CNRS/IN2P3, IPN-Lyon, F-69622, Villeurbanne, France
2 C2N, CNRS, Univ. Paris-Sud, Univ. Paris-Saclay, 91120 Palaiseau, France
3 IRFU, CEA, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
4 Department of Physics, Stanford University, Stanford, CA 94305, USA

ALGaAs/GaAs hetero-junction, Energy band diagram.

The investigated HEMTs are based on an ALGaAs/GaAs hetero-structure grown by MBE (Molecular Beam Epitaxy). It consists of a GaAs buffer layer, a 20 nm ALGaAs spacer layer (thicker than for commercial HEMT), a Si δ-doping layer, a 15 nm undoped ALGaAs barrier layer, and a 6 nm undoped GaAs cap layer.

HEMT developed at CNRS/C2N

- Si δ doped layer
- GaAs buffer layer
- ALGaAs spacer layer
- Si δ doped layer
- ALGaAs barrier layer
- GaAs cap layer

I_d-V_{ds} characteristics of a 100 pF C_{gs} HEMT @ 4.2K

- High transconductance can be obtained with typical power dissipation < 100 μW
- Characteristics unchanged at T < 4K and noise improves a bit
- HEMT can be placed close to the detector : low cabling capacitance

Low threshold and high discrimination Ge cryogenic detector for Coherent Elastic Neutrino Nucleus Scattering and low mass Dark Matter

Low threshold and high discrimination Ge cryogenic detector for Coherent Elastic Neutrino Nucleus Scattering and low mass Dark Matter

Detector + HEMT Noise Model

- Additional noise sources easily calculated considering:
 - Bias and feedback noises
 - Bias, detector, parasitic (incl. cabling), feedback and gate-source HEMT impedances
 - Feedback noise can be cancelled with an active reset
 - Bias noise can be limited to thermal noise ofRibias
 - Thermal noise of heat sensor (Ge-NTD) should be added for heat resolution
 - Knowing the heat and ionization signals FIDs, rms baseline resolution are given by:

Cold Amplifier schemes investigated

- Full HEMT-based cryogenic amplifier
 - Tested on a 240 g, 130 pF CDMS-II Ge cryogenic detector @40 mK
 - 91 eVee ionization baseline measured with 100pF HEMT (100 eVee expected by our Model)

Low Capacitance Ge Detector

- Electrostatic Simulation ongoing on the electrodes geometry :
 - Keep the efficient FID (Full Interdigitized Detector) geometry used by EDELWEISS to reject surface event

CONCLUSION

- 10 eV Heat and 20 eVee Ionisation baseline resolution (rms) feasible according to our model on ~ 35 g / 20 pF Ge cryogenic detector
- Allows for low threshold nuclear recoils sensitivity and high background rejection for Sub-GeV WIMPs and MeV neutrinos.
- Low Capacitance Cabling to be designed (kapton, vacuum coaxial cables).
- 1 kg of detector will be produced for the RICOCHET experiment (CENNS) and EDELWEISS-SubGeV (Low Mass Dark Matter)