On-wafer Characterization of Frequency Conversion Properties in an SIS Tunnel Junction

Takafumi Kojima¹, Yoshinori Uzawa¹, Wenlei Shan¹, Yuto Kozuki²

¹National Astronomical Observatory of Japan ²The University of Electro-Communications

Motivation

An SIS junction has been used as a low-noise down converter at (sub-) millimeter wavelengths for a long time. In resent years, novel applications of the SIS junction based on its superior properties are proposed:

GHz frequency converter for TES readout

Frequency up converter for multiplexing

RF: ~30 GHz IF: ~5 GHz Wideband amplifier

Measurement setup

Cryogenic probe station Operating temperature: 4.0 K (GM mechanical Cryocooler) VNA Frequency range: DC-50 GHz

Probe (IF)

=> Essential to characterize SIS frequency conversion properties. However, there has been few reports below 50 GHz, especially, on an SIS up converter. At microwave frequencies, on-wafer characterization can be applied, which allows us to directly extract device parameters and to evaluate the device performance.

Device parameter extraction

Device under test

• Equivalent circuit model

Quantum admittance

Input port

Frequency converter characterization

This work was supported by JSPS KAKENHI Grant Numbers 18H03881 and 19H02205.

