

# **Self-absorption and Phonon Pulse Shape Discrimination (PSD) in Scintillating Bolometers**

Geon-Bo Kim

Lawrence Livermore National Laboratory, USA

kim90@llnl.gov

AN JULY 2

## Abstract

Here we show that self-absorption of photons in scintillating bolometers differentiates phonon pulse shapes between  $\alpha$  and  $\beta$  signals, and discuss novel particle detectors with single phonon readout and maximized self-absorption for sub-keV particle discrimination.

## **Phonon Pulse Shape Discrimination**



## **Self-absorption in Scintillating Bolometers**





- $\checkmark$  Using pulse shape differences in phonon signals.
- ✓ Often stronger than particle discrimination using heat/light ratio
- ✓ Origin is not fully understood yet.

#### ✓ Self-absorption in slow scintillators produces delayed phonons

 $\checkmark$  Delayed phonons add up to primary phonon signals and slow it down  $\checkmark$  Amount of delayed phonons determines final phonon pulse shapes.





## **Novel Scintillating Bolometers for Rare Event Searches**



- ✓ Simple design and reduced number of readouts  $\Rightarrow$  Easier to scale up
- ✓ Strong PSD with maximized self-absorption
- Optimizing sensitivity of phonon readout  $\Rightarrow$  Will improve both energy threshold and PSD power with reduced noise

### References

[1] L. Gironi, NIMA 718 (2013): 546-549 [2] G.B. Kim, et al. Astropart. Phys. 91 (2017): 105-112 [3] D. Wahl, et al. NIMA 570 (2007): 529–535 [4] V.B. Mikhailik, et al., Phys. Status Solidi B 247 (2010) 1583 [5] G.B. Kim, et al. Adv. High Energy Phys. 2015 (2015) [6] J.Y. Lee, et al. IEEE Trans. Nucl. Sci. 63 (2016): 543-547 [7] J.H. So, et al. IEEE Trans. Nucl. Sci. 59 (2012): 2214-2218 [8] V. Alenkov, et al. *arXiv:1903.09483* (2019) [9] J.W. Beeman, et al. Astropart. Phys. 35 (2012): 813-820 [10] J.W. Beeman, et al. Eur. Phys. J. C 72 (2012): 2142 [11] S.T.P. Boyd, et al. JLTP 93 (2018): 435-440.

#### This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344