Development of superconducting tunnel junction detector with **cryogenic amplifier for COBAND experiment.** Akihiro Kasajima (Univ. of Tsukuba) For COBAND collaboration

Shin-Hong Kim, Takashi lida,Yuji Takeuchi, Kenichi Takemasa, Chisa Asano, Rena Wakasa,Kotaro Takahashi, Yuji Terada, Yuta Tsuji (U.Tsukub a), Takehiko Wada, Koichi Nagase (JAXA/ISAS), Shuji Matsuura (Kwansei gakuin Univ), Yasuo Arai, Ikuo Kurachi, Masashi Hazumi (KEK), Takuo Yoshida, Takah iro Nakamura, Makoto Sakai (U. Fukui), Satoshi Mima, Kenji Kiuchi (RIKEN), H irokazu.Ishino, Atsuko Kibayashi (Okayama Univ.), Yukihiro Kato (Kindai Univ ersity), Go Fujii, Shigetomo Shiki, Masahiro Ukibe, Masataka Ohkubo (AIST), Shoji Kawahito (Shizuoka Univ.), Erik Ramberg, Paul Rubinov, Dmitri Sergatskov (Fermilab), Soo-Bong Kim (Seoul National University), Yong-Hamb Ki m, Hyejin Lee(IBS)

1. COBAND experiment

COsmic Background Neutrino Decay search experiment

- The purpose of COBAND experiment is to determine neutrino mass by measuring the energy of neutrino decay photon.
- Neutrino lifetime is very long(T>O(10¹² years):COBE+AKARI experiment), so we use cosmic neutrino background which is the highest intensity neutrino source in the universe.
- From the diagram, neutrino mass is

$$m_i = \frac{|m_i^2 - m_j^2|}{2E_v}$$

where E_{ν} is neutrino decay photon energy and $|m_i^2 - m_i^2|$ have already been obtained by neutrino oscillation experiment.

Expected neutrino decay photon energy is too small ($E_{\nu} \sim 25$ meV), so we will use STJ (Superconducting Tunnel Junction) detector which has sufficiently small energy gap.

Nb/Al-STJ

- It consists of Nb/Al/AlOx/Al/Nb.
- A constant bias voltage is applied.

 Al_2O_3 ~100 ni SiO2 ~70 nm 2~3 nm

W

Photons break Coper pairs into quasi-particles which tunnel through the insulator layer as a current.

Nb/Al-STJ section

 $v_i \rightarrow v_i + \gamma$ Feynman diagram

2. Cryogenic SOI Amplifier

lssue

- The requirement for Nb/AI-STJ that leakage current is smaller than 100 pA is already achieved.
- As a large amount of noise from refrigerator readout line prevents the detection of the far-infrared single photon, so we need to amplify the STJ signal near the STJ.
- **Requirement for cryogenic amplifier**
- Operation at cryogenic temperature(<3K)
- Capable of amplifying STJ's fast signals (<10 μ s)
- Low power consumption and low noise

STJ Size [µm sq.]	Leakage Current [pA]
50	224±29
20	39 ± 13
10	14 ± 7

Leakage current of Nb/Al-STJ

Source Gate Drain

IV characteristic of FD-SOI MOSFET

FD-SOI MOSFET

- FD-SOII(Fully Depleted-Silicon On Insulator) MOSFET
- It has very thin body(<50 nm)

BOX SiO₂

- It is reported operation at 4 K by A group of JAXA/ISAS(T. Wada et al., J. Low. Temp. Phys. 167, (2012) 602).
- At 3 K, its threshold voltage shifts and Ids increase, but as far as we operate suitable voltage, it does not matter.

temperature dependency

We develop cryogenic amplifier using FD-SOI MOSFET.

3. Test of Amplification

SOI-STJ6

Circuit diagram of SOI-STJ6

Output waveform test signal amplification(Qin=0.49 fC)

Input charge vs. signal height(3K)

- Test signal input through R=1 k Ω and C = 1 pF.
- Expected charge for single visible photon($\lambda = 465$ nm) is 3.3 fC.
- Gain is 4.15 ± 0.03 mV/fC
- ENC is 0.124 ± 0.001 fC
- We confirmed SOI-STJ6 normally operated at 3 K as well as room temperature.
- SOI-STJ6 has a sufficient performance to detect single visible photon.

Result of STJ signal amplification

Amplification Stage

- ✓ Op-amp with negative feedback
- ✓ $C_{FB} = 300 \, \text{fF}$
- ✓ Using FD-SOI MOSFET as a R_{FB}

Buffer Stage

- ✓ Source Follower Circuit
- It improves frequency band and reduce output impedance.

- Amplifying STJ's signal illuminated by visible laser pulse($\lambda = 465$ nm) were successfully achieved by SOI-STJ6.
- Because generated charge escape to stray capacitance on wires of four-terminal method circuit to measure STJ, output signal is smaller than its expectation value.
- We need re-measurement without four-terminal method.

Output waveform of STJ's signal amplification

4. Summary

- We are developing cryogenic amplifier to detect neutrino decay photon for COBAND experiment.
- We confirmed normal operation of SOI-STJ6 at 3 K.
- We succeeded in amplifying STJ signals for visible laser pulse with SOI-STJ6.
 - Output signal is smaller than our expectation, so we need re-measurement.
- We will attempt to detect infrared single photon.