Development of superconductor tunnel junction detector with cryogenic amplifier for COBAND experiment.

Akihiro Kasajima(Univ. of Tsukuba)
For COBAND collaboration

1. COBAND experiment

- **Cosmic Background Neutrino Decay search experiment**
 - The purpose of COBAND experiment is to detect neutrino mass by measuring the energy of neutrino decay photon.
 - Neutrino lifetime is very long (T>O(10^{12}) years).
 - We need to amplify the STJ signal near the STJ section.

- **Operation at cryogenic temperature (<3K)**
 - We are developing cryogenic amplifier for COBAND experiment.
 - We are developing cryogenic amplifier to detect neutrino decay photon for COBAND experiment.

- **Cryogenic SOI Amplifier**
 - We are developing cryogenic amplifier using FD300 MOSFET.
 - It consists of Nb/Al/AIOx/Al/Nb.
 - A constant bias voltage is applied.
 - Photons break Coper pairs into quasi-particles which tunnel through the insulator layer as a current.

2. Cryogenic SOI Amplifier

- **Issue**
 - The requirement for Nb/Al-STJ that leakage current is smaller than 100 pA is already achieved.
 - As a large amount of noise from refrigerator readout line prevents the detection of the far-infrared single photon, so we need to amplify the STJ signal near the STJ.

- **Requirement for cryogenic amplifier**
 - Operation at cryogenic temperature (<3K)
 - Capable of amplifying STJ’s fast signals (<10 μs)
 - Low power consumption and low noise

- **FD-SOI MOSFET**
 - FD-SOI(“Fully Depleted Skin on Insulator”) MOSFET
 - It has very thin body (<50 nm)
 - At 3 K, its threshold voltage shifts and Ids increase, but as far as we operate suitable voltage, it does not matter.
 - We develop cryogenic amplifier using FD-SOI MOSFET.

3. Test of Amplification

- **STJ-STJ6**
 - We succeeded in amplifying STJ’s signal illuminated by visible laser pulse with SOI-STJ6.
 - Because generated charge escape to stray capacitance on wires of four-terminal method circuit to measure STJ, output signal is smaller than its expectation value.
 - We need re-measurement without four-terminal method.

- **Charge injection test**

4. Summary

- We are developing cryogenic amplifier to detect neutron decay photon for COBAND experiment.
- We confirmed normal operation of SOI-STJ6 at 3 K.
- We succeeded in amplifying STJ signals for visible laser pulse with SOI-STJ6.
- Output signal is smaller than our expectation, so we need re-measurement.
- We will attempt to detect infrared single photon.