B160-303: Optimizing Readout for Nuclear Magnetic Resonance Axion Searches

S. Kuenstner, A. Ames, D. Aybas, S. Carman, S. Chaudhuri, H.-M. Cho, C. Dawson, C. FitzGerald, P. Graham, R. Gruenke, D. Li, A. Phipps, S. Rajendran, A. Sushkov, C. Yu, K. Irwin

Nuclear Magnetic Resonance Axion Searches

- The QCD axion is a well motivated dark matter candidate, which solves the longstanding Strong CP Problem in QCD.
- Axions produce oscillating

Current State of the Art

- dc SQUIDs are extremely sensitive magnetometers.
- Optimal readout noise is achieved when $L_{coil} \approx L_{SO}$.³
- However, the energy

LSQ

- signals at $f_{ax} = mc^2/h$, with long coherence times of ~10⁶ periods.
- Axions couple to gluons, causing an effective oscillating nuclear electric dipole moment, which can be detected with a sensitive NMR spectrometer.¹

NMR Measurement Cycle

sensitivity of dc SQUIDs is limited by their loop B_{Z} inductance:

 $\frac{S_{\varPhi}}{2L_{SQ}} \ge n\hbar$

- Dispersive readout, where the RF flux signal is upconverted to microwave frequencies offers the possibility of improved flux resolution.
- See poster A22-305 for more details.
- The flux sensitivity can be improved by increasing the

Polarize spins in a strong magnetic field

Detect axion-induced torques on spins by transverse magnetization

- Spins are aligned in an external magnetic field.
- The magnetic field is tuned such that the sample's Larmor frequency matches the axion search frequency.
- The axion-induced transverse magnetization is monitored with a pickup coil and amplifier.
- The magnetization signal is extremely weak, requiring a low noise amplifier.

Pickup Coil Impedance

- number of microwave photons, $n_{\mu w}$.
- The quantity $\gamma n_{\mu w}$ can be made larger than 1, yielding an energy sensitivity better than \hbar , better than any dissipative SQUID.

 $\omega_{\rm s} \approx 10 {
m MHz} \quad \omega_a(\Phi) \approx 6 {
m GHz}$

RQU energy sensitivity:

Non-Classical Techniques

- Further improvements are possible using quantum readout and state preparation techniques:
 - Using squeezed microwave states with reduced phase noise to detect the RQU state allows for even larger enhancements in energy sensitivity.
 - Hyperpolarization of NMR sample leads to enhancement of axion signal.

- The spins can be modelled as presenting an effective impedance Z_{spin} to the readout amplifier, and the goal is to minimize the overall magnetization-referred noise.
- For most NMR samples with modest polarization, this spin impedance is small compared to the pickup coil impedance: $|Z_{spin}| \ll \omega_L L.$
- Initial experiments will use untuned pickup coils, so readout must be optimized for an inductive source impedance.

References

- Budker, Dmitry, et al. "Proposal for a cosmic axion spin precession experiment (CASPEr)." PRX (2014).
- 2. Clarke, John, Claudia D. Tesche, and R. P. Giffard. "Optimization of dc SQUID voltmeter and magnetometer circuits." Journal of Low Temperature Physics (1979).
- 3. Aspelmeyer, Markus, et al. "Cavity optomechanics." *Reviews of Modern Physics* (2014).

