Preparation of drop deposited sources in 4π absorbers for total decay energy spectrometry (Q spectrometry)

Introduction

- **α** spectrometry with semiconductor detectors cannot quantify some actinides due to overlapping α peaks (e.g. 239Pu and 240Pu)
 - Measurements must be combined with other techniques
- **Q** spectrometry
 - **Advantages**
 - One peak per radionuclide at:
 $$E = E_{0} + E_{x} + E_{\text{recoil}} - E_{\text{rel}}$$
 - Minimize the overlap between peaks
 - One measurement can quantify all actinides
 - **Constraints and conditions:**
 - All radiation must be absorbed
 - Absorber sized to absorb all the radiation from the decay
 - All radiations must be converted to heat
 - Self absorption of the nuclear recoil deforms the peak and enlarges the resolution [1-2]
 - Very thin and homogeneous source deposit required

Source deposition techniques

- **Electro-deposition and electro-precipitation**
 - Very thin (nm scale) and homogeneous radioactive deposit
 - Q spectrum with energy resolution of 1.25 keV was demonstrated [3]
 - Deposition yield depends on the element → Loss of activity traceability
 - More complex implementation required
- **Drop and dry deposition**
 - Thick, inhomogeneous and unreproducible deposit
 - Dispersion of rise time
 - Yield depends on the element
 - To keep the drop and dry deposition attractive, we are investigating more complex implementation required
 - Drop deposition on gold with latex pad [4]
 - Drop deposition on nanoporous gold [5]

Surface preparations for source deposition

- **Gold surface with latex pad [4]**
 - Latex particles of 70 nm electrosprayed on a Au disk of 12 mm diameter.
 - 239Pu radioactive solution dropped and dried using a micropipette.
 - The hydrophilic latex pad produces a homogeneous spreading and drying of the drop.
 - 1 mm2 (~1 Bq) cut and enclosed between two 25 μm thick Au foils.
- **Nanoporous gold (NPAu)** prepared by dealloying AuAg [6]
 - Ag$_{90}$Au$_{10}$ (wt%) foil welded on half of the Au absorber.
 - Ag is dissolved by nitric acid → A NPAu layer remains on the half absorber.

- **MMC prototypes with 239Pu in 4π absorbers**
 - 4x Au absorber
 - Radioactive sample
 - AuEr sensor
 - Pick-up coil
 - Pulse area:
 - 239Pu: 9.7 ± 0.2 keV
 - 240Pu: 21.9 ± 0.4 keV
 - Relative uncertainties of 8.6% and 8% respectively

Q spectra and results

- **Absorber with source on latex pad**
 - Square mesh (239Pu) 4 keBq/g
 - Dispersion of rise time and dependence of pulse height on rise time
 - Peak shape deviates from Bortel function + peak overlap → No quantification possible

- **Absorber with source in NPAu (embedded in 2x25 μm)**
 - Smaller dependence of pulse height on rise time
 - Bortel function peak shape
 - Resolution insufficient to separate 239Pu and 241Pu

- **Absorber with source in NPAu (embedded in 2x50 μm)**
 - No rise time dependence
 - Bortel function peak shape
 - Better resolution resolves partially 239Pu and 241Pu
 - Isotopic quantification possible

Further results are available in the references.

Conclusions and perspectives

- We successfully produced alternative surfaces on gold for source deposition
- A dependence of pulse height on rise time was observed and has been suppressed
- Precise Pu isotopic quantification is possible using drop deposition in NPAu
- Resolution is far from baseline resolution → must be understood and improved

References

Acknowledgments: this project is supported and funded by the CEA Bottom-up programme 2018