

Mohcine LAARRAJ<sup>1</sup>, Matias RODRIGUES<sup>1\*</sup>, Martin LOIDL<sup>1</sup>, Xavier-François NAVICK<sup>2</sup>, Laurence FERLAZZO<sup>3</sup>

372

<sup>1</sup>CEA-Saclay, LIST, Laboratoire National Henri Becquerel <sup>2</sup>CEA-Saclay IRFU, DEDIP <sup>3</sup>CNRC, Centre de Nanosciences et de Nanotechnologies (C2N) \*Corresponding author: <u>matias.rodrigues@cea,fr</u>



**Preparation of drop deposited sources in 4\pi absorbers** for total decay energy spectrometry (Q spectrometry)

# Introduction

- $\alpha$  spectrometry with semiconductor detectors cannot quantify some actinides due to overlapping  $\alpha$  peaks (e.g. <sup>239</sup>Pu and <sup>240</sup>Pu)
- → Measurements must be combined with other techniques
- **Q** spectrometry
- Advantages



## Source deposition techniques

- Electro-deposition and electro-precipitation
  - Very thin (nm scale) and homogeneous radioactive deposit
    - $\rightarrow$  Q spectrum with energy resolution of 1.25 keV was demonstrated [3]
  - Deposition yield depends on the element  $\rightarrow$  Loss of activity traceability
  - More complex implementation required

- One peak per radionuclide at:
- $E = E_{\alpha} + E_{\gamma} + E_{X} + E_{e} + E_{recoil} \sim E_{Q_{\alpha}}$
- $\rightarrow$  Minimize the overlap between peaks
- $\rightarrow$  One measurement can quantify all actinides

#### **Constraints and conditions:**



- All radiation must be absorbed  $\bullet$
- $\rightarrow$  Absorber sized to absorb all the radiation from the decay
- All radiations must be converted to heat •
- $\rightarrow$  Self absorption of the nuclear recoil deforms the peak and enlarges the resolution [1-2]
- $\rightarrow$  Very thin and homogeneous source deposit required

#### Drop and dry deposition

- Thick, inhomogeneous and unreproducible deposit
  - $\rightarrow$  Deforms and enlarges the Q peaks [2]
- Activity traceability (deposited mass or volume measurement)
- Very simple procedure
- To keep the drop and dry deposition attractive, we are investigating alternative surfaces to improve the deposit quality.
  - $\rightarrow$  Drop deposition on gold with latex pad [4]
  - $\rightarrow$  Drop deposition on nanoporous gold [5]

## Surface preparations for source deposition

- Gold surface with latex pad [4]
- Latex particles of 70 nm electrosprayed on a Au disk of 12 mm diameter.
- <sup>239</sup>Pu radioactive solution dropped and dried using a micropipette.
- The hydrophilic latex pad produces a homogeneous spreading and drying of the drop. 1 mm<sup>2</sup> (~1 Bq) cut and enclosed between two 25 µm thick Au foils.



## Q spectra and results

### Absorber with source on latex pad





- **Nanoporous gold (NPAu)** prepared by dealloying AuAg [6]
- Ag<sub>70</sub>Au<sub>30</sub> (wt%) foil welded on half of the Au absorber.
- Ag is dissolved by nitric acid  $\rightarrow$  a NPAu layer remains on the half absorber.





Acknowledgments: this project is supported and funded by the CEA Bottom-up programme 2018

Resolution is far from baseline resolution  $\rightarrow$  must be understood and improved