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• Q spectrometry

• Advantages 

• One peak per radionuclide at:

E = Ea+Eg+EX+Ee-+Erecoil ~ EQa

 Minimize the overlap between peaks

 One measurement can quantify all actinides 

• Constraints and conditions: 

• All radiation must be absorbed 

 Absorber sized to absorb all the radiation from the decay

• All radiations must be converted to heat

 Self absorption of the nuclear recoil deforms the peak and enlarges the resolution [1-2] 

 Very thin and homogeneous source deposit required

• a spectrometry with semiconductor detectors cannot quantify 

some actinides due to overlapping a peaks (e.g. 239Pu and 240Pu)

 Measurements must be combined with other techniques

• Electro-deposition and electro-precipitation

• Very thin (nm scale) and homogeneous radioactive deposit

 Q spectrum with energy resolution of 1.25 keV was demonstrated [3]

• Deposition yield depends on the element  Loss of activity traceability

• More complex implementation required

• Drop and dry deposition

• Thick, inhomogeneous and unreproducible deposit

 Deforms and enlarges the Q peaks [2]

• Activity traceability (deposited mass or volume measurement)

• Very simple procedure

• To keep the drop and dry deposition attractive, we are investigating 

alternative surfaces to improve the deposit quality.

Drop deposition on gold with latex pad [4]

Drop deposition on nanoporous gold [5]

SEM images of NPAu 

10 µm 10 µm
100 nm100 nm

• Gold surface with latex pad [4]

• Nanoporous gold (NPAu) prepared by dealloying AuAg [6]
- Ag70Au30 (wt%) foil welded on half of the Au absorber.

- Ag is dissolved by nitric acid  a NPAu layer remains on the half absorber.

- Radioactive solution (HNO3 3N, 239Pu 4 kBq/g)

- Easily absorbed and dried (few tens minutes) in NPAu

- Second Au half-absorber diffusion-welded on top

2 mm

~ 0.3 µL (~ 1.2 Bq) 

• MMC prototypes with 239Pu in 4p absorbers
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Reference values Measured values with NPAu

X/(239Pu+240Pu)

(Bq/Bq)

Rel. unc.

(%)

X/(239Pu+240Pu)

(Bq/Bq)

Rel. unc.

(%)
239Pu 0.9683 (40) 0.42 0.9688 (38) 0.39
240Pu 0.03166 (42) 1.3 0.03117 (50) 1.6
241Pu 0.02061 - - 0.01832 (38) 2.1
241Am 0.00793 (24) 3.1 0.00445 (19) 4.2
238Pu - - - 0.00479 (19) 4.0

• Absorber with source on latex pad

• Absorber with source in NPAu (embedded in 2x25 mm)

• Absorber with source in NPAu (embedded in 2x50 mm)

s = 5.1 µs

Mean = 105 µs 

s = 0.33 µs

Mean = 56 µs 

s = 0.51 µs

Mean = 114 µs 
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• Dispersion of rise time 

and dependence of 

pulse height on rise time

• Peak shape deviates 

from Bortel function + 

peak overlap

 No quantification

possible

• Smaller dependence of 

pulse height on rise time

• Bortel function peak 

shape

• Resolution insufficient to 

separate 239Pu and 
240Pu

• No rise time 

dependence

• Bortel function peak 

shape

• Better resolution 

resolves partially 239Pu 
240Pu

 Isotopic quantification

possible

 Good agreement between measured and reference values
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- Latex particles of 70 nm electrosprayed on a Au disk 

of 12 mm diameter.

- 239Pu radioactive solution dropped and dried using a 

micropipette.

- The hydrophilic latex pad produces a 

homogeneous spreading and drying of the drop.

- 1 mm2 (~1 Bq) cut and enclosed between two 25 µm 

thick Au foils.

Simplified decay scheme

• We successfully produced alternative surfaces on gold for source deposition

• A dependence of pulse height on rise time was observed and has been 

suppressed

• Precise Pu isotopic quantification is possible using drop deposition in NPAu

• Resolution is far from baseline resolution  must be understood and improved
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