

Development of Metallic Magnetic Calorimeter Arrays with Embedded ¹⁶³Ho for the ECHo Experiment

F. Mantegazzini¹, A. Barth¹, H. Dorrer², C. E. Düllmann², C. Enss¹, A. Fleischmann¹, L. Gastaldo¹, S. Kempf¹, T. Kieck³, N. Kneip³, U. Köster³, A. Reifenberger¹, C. Velte¹, M. Wegner¹, K. Wendt³ ¹Kirchhoff Institute for Physics, Heidelberg University, ²Institute for Nuclear Chemistry, Johannes Gutenberg University Mainz, ³Institute for Physics, Johannes Gutenberg University Mainz

The ECHo Experiment

MMC Working Principle

Electron capture of ¹⁶³Ho

¹⁶³Ho calorimetrically measured spectrum

600

e<

-

. •

Gounts

-400

200

Metallic magnetic calorimeter (MMC)

X-ray emission			Typical MINC	
Auger electrons Calorimetric measurement Coster-Kronig transitions	0.0 0.5 1.0 1.5 2.0 2.5 Energy / keV	2.826 2.828 2.830 2.832 2.834 Energy / keV	• $C_{det} = 1 p J/K @ 20 mK$ • $\Delta E = 6 keV$	$\rightarrow \Delta T \approx 1 \text{ mK}$

Detector Layout and Implantation

ECHo-1k detector chip: 64-pixels MMC array for implantation with ¹⁶³Ho

 Lithographic microfabrication on a 380 mm thick 3" silicon wafer

• 36 detector channels (4 non-gradiometric for temperature monitoring)

 10^{6}

10'

- ¹⁶³Ho implantation area: 150 μ m x 150 μ m
- Chemically purified Holmium implanted with a mass selective ion beam
- Absorbers (second layer): gold layers 165 μm x 165 μm x 5 μm

System characterisation

Cryogenic Set-up and Detector Characterisation

Detector platform

- Copper holder \rightarrow good thermalisation
- Dedicated circuit board
- Gold bondings to ensure detector thermalisation
- 1st stage read-out: 32 DC front-end SQUIDs

- 2-stage amplifier **SQUID module**
- 12 amplifier SQUIDs
- Tin plated copper housing
- → Good thermal contact
- → Electromagnetic shielding

Full mounted set-up

- 32 channels for parallel read out
- Mounted at the cryostat mixing chamber plate ($T \approx 8 \text{ mK}$)
- T-shaped copper holder with aluminium shielding against external magnetic fields

Activity per pixel: average activity = 1.06 Bq / pixel

• Energy resolution: $\Delta E_{FWHM} @ 0.41 \text{ keV}$ (NI line) between 6.0 eV and 7.7 eV

• Total background: $< 1.6 \cdot 10^{-6}$ events/eV/det/day

New Detector Design

- Absorber thickness = 2.5 μ m \rightarrow minimisation of absorber heat capacity, keeping high quantum efficiency
- Compact absorber geometry for highly efficient ¹⁶³Ho implantation

Summary and Outlook

- ECHo 1st generation MMC arrays were successfully
 - produced and tested

Microscope image of microfabricated round-shaped meanders

• implanted with ¹⁶³Ho source

 New design for next generation MMC arrays for ECHo has been developed and it's currently being produced

Next steps:

- characterisation of new design at mK temperatures
- ¹⁶³Ho implantation on wafer scale
- characterisation of different ¹⁶³Ho implantation concentrations

characterisation of different host materials for implanatation

The ECHo Experiment