# **Operational optimizations for TES detectors at a** femtosecond X-ray laser

C. J. Titus<sup>a</sup>, D. Li, H.-M. Cho<sup>b</sup>, S.-J. Lee<sup>b</sup>, K. Morgan<sup>c</sup>, D. Swetz<sup>c</sup>, A. Wessels<sup>c</sup>, J. Ullom<sup>c</sup>, K. Irwin<sup>a</sup> <sup>a</sup>Department of Physics, Stanford University, Stanford, California, USA, <sup>b</sup>SLAC National Accelerator Laboratory, Menlo Park, California, USA, <sup>c</sup>NIST, Boulder, Colorado, USA

## Abstract

Transition-edge sensor (TES) microcalorimeters have found success as X-ray detectors at synchrotron light-sources, due to a unique combination of high collecting area and good energy resolution. However, the upcoming generation of free-electron lasers, such as the Linac Coherent Light Source II (LCLS-II), will be orders of magnitude brighter and faster than current sources, potentially leading to severe pulsepileup issues. We will demonstrate that it is possible to mitigate pulse pile-up using simple X-ray filters, and take advantage of the substantial increase in X-ray flux.

# **Transition-Edge Sensors in development enable LCLS-II science**

#### **TES Design Targets**





### **LCLS-II** Features

• Bright ( $10^{13} \gamma$ /pulse) • Ultrafast (50 ps pulses) • Pulse rate (300 kHz)

#### **TES Enables**

• Dilute samples Faster data collection • Broad energy range Push-button operation



## **High Background**

### **High Flux**



# Maximize signal rate with beryllium transmission filter







### Conclusion

For high-flux, high-background X-ray applications such as LCLS-II, TES detectors work best in concert with a transmission filter to lower the overall signal

## Acknowledgements

