THE EXPERIMENT FOR CRYOGENIC LARGE-APERTURE INTENSITY MAPPING (EXCLAIM)

Peter A. R. Ade^a, Christopher J. Anderson^b, Emily M. Barrentine^b, Nick G. Bellis^b, Patrick C. Breysse^c, Alberto D. Bolatto^d, Berhanu T. Bulcha^b, Giuseppe Cataldo^b, Jake A. Connors^b, Paul W. Cursey^b, Negar Ehsan^b, Henry Grant^d, Thomas Essinger-Hileman^b, Larry A. Hess^b, Mark K. Kimball^b, Alan Kogut^b, Alex Lambⁱ, Luke N. Lowe^b, Phil Mauskopf^e, Jeff McMahon^f, Mona Mirzaei^b, S. Harvey Moseley^b, Jonas Mugge-Durum^d, Omid Noroozian^b, Ue-Li Pen^c, Anthony R. Pullen^g, Samelys Rodriguez^b, Peter J. Shirron^b, Rachel S. Somerville^h, Thomas R. Stevenson^b, Eric R. Switzer^b, Carole Tucker^a, Eli Visbal^h, C. G. Volpert^d, Edward J. Wollack^b, Shengqi Yang^g

^aCardiff University, Cardiff, UK; ^bNASA-Goddard Space Flight Center, Greenbelt, MD, USA; ^cCanadian Institute for Theoretical Astrophysics, Toronto, CA; ^dUniversity of Maryland-College Park, MD, USA; ^eArizona State University, Tempe, AR, USA; ^fUniversity of Michigan, Ann Arbor, MI, USA; ^gNew York University, New York, NY, USA; ^hCenter for Computational Astrophysics, Flatiron Institute, New York, NY, USA, ⁱMissouri University of Science and Technology, Rolla, MO, USA

ABSTRACT

The EXperiment for Cryogenic Large-Aperture Intensity Mapping (EXCLAIM) is a high-altitude balloon spectrometer designed to deepen our understanding of star formation in a cosmological context. Rather than identifying individual objects, as in a galaxy redshift survey, EXCLAIM will be a pathfinder to demonstrate an intensity mapping (IM) approach. EXCLAIM will operate at 421 – 540 GHz with a spectral resolution of R=512 to measure the integrated line emission from galaxies and the intergalactic medium (IGM). The instrument is ideal for observing CO and [CII] line emissions from the nearby universe out to redshifts of $z\sim3.5$. CO and [CII] line emissions are key tracers of the gas phases in the interstellar medium involved in star-formation processes. EXCLAIM will shed light on questions such as why the star formation rate declines and breaks away from the cosmological evolution of dark matter at redshifts of $z\sim 2$. The instrument will employ an array of six superconducting integrated gratinganalog spectrometers (µ-Spec) with superconducting microwave kinetic inductance detectors (KIDs) in an all-cryogenic telescope (1.5 K) to achieve near backgroundlimited sensitivity. Here, we present an overview of the EXCLAIM instrument and status.

INTENSITY MAPPI

Rather than detect individual galaxies, EXCLAIM will measure the statistics of

NG	
No.	Low
All you	
N. Con	a state of the second
	HIGH
1	
	A State of the
and the	

brightness fluctuations of redshifted, cumulative line emission.

Figure: A simulation of an EXCLAIM sub-region. Most individual galaxies (green points) are not resolved, but the structure of the cosmic web is apparent on large scales. Typical small area surveys (HIGH and LOW density regions here) may not take a fair sample of galaxies.

Why Intensity Mapping?

- > Aperture: Pushing to higher flux sensitivity and lower confusion drives large apertures. Instead, IM measures surface brightness with sensitivity limited by detector noise or photon background.
- **Cumulative emission**: IM is sensitive to the faintest sources (good! – blind complete census) but also all other radiation (bad! – but spectral differences can be used to reject continuum emission).
- **Volume:** IM provides efficient access to large cosmological volumes and redshifts, reducing cosmic variance.
- **Environments:** Lines and ionization states trace different environments.
- Hosts: IM measures the relative clustering of galaxies with bright line emission, which provides insight into the halos masses that host star formation.
- Systematics: No selection function (i.e. no dust extinction or issues such as fiber collisions from nearby galaxies).

SCIENCE							
EXCLAIM submillimeter	will	map emission	the of	Ionized intergalactic medium Self-shielding neutral gas			

lelellell y l'die	57.0 Kpbs	Spectrometer Grating Order	2 (operates over a single order)
Data rate	9 MB/s	Resolving Power, $R = \lambda / \Delta \lambda$	512
Gondola Power	600 W	Spectrometer Efficiency	\sim 40% (from Si lens input to the MKIDs)
Readout Power	\leq 550 W	Spectrometer materials	Nb planar transmission line, single-crystal Si dielectric
Projected aperture	74 cm	MKIDs per spectrometer	355
Physical aperture	90 cm	MKID materials	20 nm thick Al microstrip, single-crystal Si dielectric, ground plane Nb
Angular resolution	3.5' FWHM		
Edua Tanar	0 dP	MKID Readout Band	2 – 2.5 GHz
Edge Taper	-9 UD	NEP	< 3x the photon background limit at the spectrometer input
Telescope f/#	1.3		(Photon NEP ~ 6 x 10^{19} W/ \sqrt{Hz} in the darkest atmospheric channels)
Detector spacing	2.2 f λ	Operating temperature	100 mK
Instantaneous FOV	12.5'	LNA Noise Temperature	≤ 5 K

OBSERVING STRATEGY

•The spacing between bright atmospheric emission lines is ~ 5 GHz. Pressure broadens these lines, following the relation ~ 10 MHz/Torr. Thus, to observe between these lines requires < 10 Torr, or > 100000 ft altitude. EXCLAIM will fly at >120,000 ft (36 km).

57.6 kpbs

EXCLAIM extragalactic

spectrometers.

EXCLAIM galactic

Telemetry rate

•We cross-correlate with the Baryon Oscillation Spectroscopic Survey (BOSS) Stripe 82 for primary science – a reference survey is shown above.

•Large area: Cross-correlation can go wide (more isotropic volume); in contrast, auto-power aims for SNR~1 per mode.

redshifted carbon monoxide (CO) and singly-ionized carbon in windows ([CII]) lines comprising 0 < z < 3.5. These lines trace star formation and its precursors, but have only preliminary characterization beyond the nearby universe.

EXCLAIM's Primary Science Questions:

- 1. What factors led to the dramatic decline in star formation since
 - $z \sim 2$ in contrast to dark matter evolution?
- 2. What is the typical abundance, excitation and evolution of the molecular gas which forms stars?
- 3. How well does CO trace H2 in galaxies?
- 4. Is intensity mapping a viable approach to probe high redshifts?

CO: EXCLAIM will crosscorrelate with spectroscopic redshift catalogs galaxy (shown right) to constrain the molecular CO total gas abundance from 0 < z < 0.7and potentially out to z=3.5with extended BOSS survey releases.

•Access linear scales up to $k \sim 1 h Mpc^{-1}$.

•Plan for a conventional flight from Texas or New Mexico, as it is well matched to the BOSS-North/South region, and has simple logistics, high recovery rate, and frequent flight opportunities.

•To resolve these windows at ~500 GHz requires R > $\frac{500 GHz}{5 GHz}$ = 100. The EXCLAIM goal is R=512.

•We truncate at 540 GHz to avoid the bright ortho- H_2O line at 557 GHz.

•A factor of 10 in photon background is a factor of 100 in time. An 8 hour conventional flight with a cryogenic telescope thus is comparable to a 33 day flight with a warm telescope.

Sidewall Silicon Lens & Emitters Receivers Phase Delay Absorber Slot Antenna \wedge lna Microwave -~~ Primary ¦ Readout Ď—□ | Feedline Beam

µ-SPEC & READOUT

• We uses superconducting Microwave Kinetic Inductance Detectors (MKIDs) for easy multiplexing and to reach ultra-low sensitivity. We implement thin film AI in a microstrip half-wave resonator design with a Nb ground plane.

EXCLAIM CII: will crosscorrelate with the BOSS QSO survey from 2.5 < z < 3.5 to provide a definitive test of CII abundance (shown right) and probe the CII and the star formation rate (SFR) relation [12] determining whether it relations or follows local suggests strong evolution of the average Interstellar Medium.

> Fig.: CII total abundance from cumulative luminosity vs. redshift. EXCLAIM sensitivity (red star) is compared to existing models [7,13-15] and preliminary measurements [11]. Here b is the clustering bias of the emitters and I_{v} is the intensity.

- µ-Spec integrates all the elements of a grating spectrometer the dispersive element, filters, and detectors - on a single chip.
- Phase delay is introduced by a synthetic grating made of superconducting Nb microstrip lines patterned on both sides of a single-crystal Si substrate (450 nm thick) [1]. The high index of refraction of Si allows us to do so in a compact space.
- A 2-D parallel plate waveguide region in a Rowland circle architecture serves as a spatial beam combiner and focal plane (which Nyquist-samples the spectral response).

• For EXCLAIM, an order-choosing filter selects the design order.

- Heritage: R=64 µ-Spec prototype demonstration [2]. Demonstration of Coplanar Waveguide (CPW) resonators of 10-25 nm thick AI with $Q_{int} \ge 1 \times 10^6$ [3] and Nb with $Q_{int} \ge 5 \times 10^5 [4].$
- Readout: EXCLAIM will use a Reconfigurable Open Architecture Computing Hardware (ROACH)-derived readout system developed by ASU [5], which is the most mature MKID readout system for balloon platforms.

1] Patel, A., et al., IEEE Trans. Appl. Supercond., 23.3 (2013): 2400404. [3] Noroozian, O., et al., American Astron. Soc. Meeting Abstracts, 231 (2018). [4] Hess, L., et al., J. Low Temp. Phys., in prep., (2019). [5] Gordon, S., et al., J. Astron. Instrum., 5.04 (2016): 1641003. [6] Lidz, A., et al., Astrophys. J., 741.2 (2011): 70. [7] Popping, G., et al., Mon. Notices Royal Astron. Soc., 461.1 (2016): 93-110. 8]Pullen, A. R., et al., Astrophys. J 768.1 (2013): 15.

[9]Righi, M. et al., Astron. Astrophys., 489.2 (2008): 489-504. [2] Noroozian, O., et al., International Symposium on Space Terahertz Technology, (2015). [10] Visbal, E., et al., J. Cosmol. Astropart. Phys., 2011.08 (2011): 010. [11]Pullen, A. R., et al., Mon. Notices Royal Astron. Soc., 478.2 (2018): 1911-1924. [12] Padmanabhan, H., arXiv preprint arXiv:1811.01968 (2018). [13] Y. Gong, et al., Astrophys. J, 745:49 (2012). [14] M. Silva, et al., Astrophys. J, 806:209 (2015). [15] Yue, B., et al., Mon. Notices Royal Astron. Soc, 450.4 (2015): 3829-3839. [16] Li, Tony Y., et al., Astrophys. J, 817.2 (2016): 169.

ACKNOWLEDGEMENT

We gratefully acknowledge funding provided the NASA Astrophysics Research and by Analysis (APRA) Program.

CURRENT STATUS

The EXCLAIM program began in April 2019 and is in a requirements definition stage, with subsystem designs in progress. The engineering flight is expected in 2021, and a science flight in 2022.